

Hydrogeological Report

2634, 2636, 2640, 2642 Eglinton Avenue West and 1856, 1856A Keele Street

Toronto, Ontario

M6M 1T7

Project: 22-1464

December 19, 2022

Prepared For: Fora Developments Inc. 1840 Eglinton Avenue West, Suite 202 Toronto, ON, M6P 1W9 Prepared By: Groundwater Environmental Management Services Inc. 150 Rivermede Road, Unit 9 Concord, ON, L4K 3M8

Contents

1.0	Introduction
2.0	Site Conditions
2.1	Location and Land Usage3
2.2	Proposed Development4
3.0	Methodology4
3.1	Drilling Program4
3.2	Hydraulic Testing4
3.3	Water Quality Sampling4
4.0	Geology and Hydrogeological Setting5
4.1	Subsurface Investigation
4.2	Stratigraphy and Hydrogeological Conditions6
4.3	Groundwater Level/Elevation Monitoring7
4.4	Single Well Response Tests7
4.5	Groundwater Quality9
5.0	Short and Long-Term Discharge Rates9
5.1	Short-Term Construction Dewatering9
5.2	Radius of Influence
53	
5.5	Pumping Rate Calculations13
5.4	Pumping Rate Calculations
5.4 5.5	Pumping Rate Calculations 13 Construction Dewatering Rates 13 Long-Term Seepage Rates 14
5.4 5.5 6.0	Pumping Rate Calculations13Construction Dewatering Rates13Long-Term Seepage Rates14Potential for Adverse Effects14
5.4 5.5 6.0 6.1	Pumping Rate Calculations13Construction Dewatering Rates13Long-Term Seepage Rates14Potential for Adverse Effects14Regulated and Sensitive Areas14
5.4 5.5 6.0 6.1 6.2	Pumping Rate Calculations13Construction Dewatering Rates13Long-Term Seepage Rates14Potential for Adverse Effects14Regulated and Sensitive Areas14MECP Well Records and Groundwater Resources14
5.4 5.5 6.0 6.1 6.2 6.3	Pumping Rate Calculations13Construction Dewatering Rates13Long-Term Seepage Rates14Potential for Adverse Effects14Regulated and Sensitive Areas14MECP Well Records and Groundwater Resources14Settlement15
5.4 5.5 6.0 6.1 6.2 6.3 6.4	Pumping Rate Calculations13Construction Dewatering Rates13Long-Term Seepage Rates14Potential for Adverse Effects14Regulated and Sensitive Areas14MECP Well Records and Groundwater Resources14Settlement15Recommended Additional Fieldwork and Monitoring15
5.3 5.4 5.5 6.0 6.1 6.2 6.3 6.4 7.0	Pumping Rate Calculations13Construction Dewatering Rates13Long-Term Seepage Rates14Potential for Adverse Effects14Regulated and Sensitive Areas14MECP Well Records and Groundwater Resources14Settlement15Recommended Additional Fieldwork and Monitoring15Conclusion16
5.3 5.4 5.5 6.0 6.1 6.2 6.3 6.4 7.0 8.0	Pumping Rate Calculations13Construction Dewatering Rates13Long-Term Seepage Rates14Potential for Adverse Effects14Regulated and Sensitive Areas14MECP Well Records and Groundwater Resources14Settlement15Recommended Additional Fieldwork and Monitoring15Conclusion16References17

Hydrogeological Report Fora Developments Inc.

List of Figures

Figure 1	Regional Location Plan
Figure 2	Detailed Site Plan
Figure 3	Surface Geology and MECP Wells
Figure 4	Dewatering Area

List of Appendices

Appendix A	Architectural Drawings
Appendix B	Borehole Logs and Well Installation Details
Appendix C	Site Geologic Cross Sections
Appendix D	Hydraulic Conductivity Analysis
Appendix E	Water Quality Analysis
Appendix F	Dewatering Calculations
Appendix G	MECP Wells

1.0 Introduction

Groundwater Environmental Management Services Inc. (GEMS) was retained by Fora Developments Inc. to evaluate the hydrogeological conditions for the proposed development at 2634, 2636, 2640, 2642 Eglinton Avenue West and 1856, 1856A Keele Street, Toronto, Ontario (the Site). The regional location of the Site is illustrated in **Figure 1**.

The Site area is approximately 1,350 square metres (m²) (gh3, 2022) and currently contains mixed residential and commercial buildings. A single, thirty-three (33) level tower is proposed for the Site with three (3) levels of underground parking structure (gh3, 2022). The proposed architectural drawings are provided in **Appendix A**.

GEMS has reviewed the available relevant hydrogeological, environmental, and geotechnical information and has prepared this Hydrogeological Report in support of the proposed development by assessing the short and long-term dewatering requirements.

GEMS' scope of work includes:

- A review of hydrogeological conditions and environmental information based on previous reports prepared for the Site;
- A review of subsurface soils conditions;
- Groundwater level monitoring;
- Hydraulic conductivity testing;
- Water quality analysis;

- Calculation of maximum radius of influence;
- Calculation of maximum probable short and long-term dewatering rates;
- Assessment of potential adverse environmental effects; and,
- Assessment MECP well records within 500 m of the Site.

2.0 Site Conditions

2.1 Location and Land Usage

The Site is irregularly shaped and located on the north side of Eglinton Avenue West and west of Keele Street (Google Earth, 2022). The Site is currently zoned as commercial residential (City of Toronto Zoning By-law 569-2013, 2020).

Lands within 500 metres (m) of the Site are urban, and predominately consist of residential, commercial residential, residential apartment and open space (City of Toronto Zoning By-law 569-2013, 2020). The Keelesdale Light-rail Transit (LRT) Station is located immediately west of the Site and a youth recreation center and city park exist to the west of that.

North: Commercial Residential and Residential

East: Commercial Residential, Residential, Residential Apartment

South: Commercial Residential and Residential

West: Commercial Residential, LRT Station, Open Space (Coronation Park and Keelesdale North Park), Youth Recreation Center.

2.2 Proposed Development

The Site Plan outlines a total Site area of approximately 1,350 m² with a proposed development consisting of a single, mixed commercial and residential tower. The building will be comprised of thirty-four (34) levels with retail space on the ground floor (gh3, 2022). The underground structure will consist of 3 parking levels with a lowest Finished Floor Elevation (FFE) estimated at 115.5 metres above sea level (masl), based on the provided preliminary section drawings and a ground surface elevation of approximately 129.5 masl (gh3, 2022). The base of the excavation (excavation invert) for use in dewatering estimations is assumed to be one metre below the FFE (114.5 masl).

3.0 Methodology

The methodologies followed to complete the field investigation are outlined in this section.

3.1 Drilling Program

On 24 October 2022 and 28 November 2022, Terrapex Environmental Ltd. (Terrapex) carried out a field investigation that included the advancement of three (3) boreholes, for the purpose of logging the site geology and installing monitoring wells (MW101, MW201, MW202).

All monitoring wells were equipped with a 50-millimetre (mm) diameter, schedule-40, Polyvinyl chloride (PVC) monitoring wells, with screened intervals of 3.05 m length at their base. The wells were installed to evaluate static groundwater elevations, conduct hydraulic testing, and obtain water quality samples. All monitoring wells were developed prior to sampling activities using a Waterra inertial lift pump by purging at least three well volumes or until the monitoring well was purged dry. Borehole logs produced by Terrapex are provided in **Appendix B**, and a detailed Site Plan showing the borehole locations is presented on **Figure 2**.

3.2 Hydraulic Testing

On 8 December 2022, GEMS personnel visited the Site to complete Single Well Response Tests (SWRTs) on monitoring wells MW101, MW201 and MW202.

The SWRTs consisted of rising head testing performed by 'instantaneously' removing a pre-determined volume of water (a slug). Water level recovery back to static conditions was monitored using an automated water level logging device and validated with manual measurements. A dedicated barologger was set above the water table to allow the data to compensate for changes in atmospheric pressure.

3.3 Water Quality Sampling

On 28 November 2022, GEMS personnel were on Site to collect one (1) groundwater sample for water quality analysis. The sample was taken from monitoring well MW101 using a new dedicated bailer and sterile nitrile gloves to preserve sample integrity and ensure that the results represent in-situ groundwater conditions. The sample collection was not filtered.

The sample was packed with ice in a cooler to maintain sample temperature, and the cooler was sealed and transported for analysis to Bureau Veritas, a Canadian laboratory accredited and licensed by the Standards Council of Canada and/or the Canadian Association for Laboratory Accreditation (CALA). The

sample was tested for all parameters denoted in The City of Toronto Sanitary and Storm Sewer By-law criteria.

4.0 Geology and Hydrogeological Setting

The Site is situated in the physiographic region detailed as the South Slope, characterized by ground moraine with irregular knolls and hollows (Chapman & Putnam, 2007). Overburden materials deposited at the Site are reported to consist mainly of stone-poor, sandy silt to silty sand-textured till on Paleozoic terrain. The surficial soils in the area are mapped as Halton Till (Ontario-Erie lobe) (OGS, 1991), characterized as being carbonate-rich and comprised of silt and silty clay. The surficial geology of the Site is displayed in **Figure 3**. Paleozoic bedrock in the area is mapped as Upper Ordovician deposits of shale and limestone belonging to the Georgian Bay Formation (OGS, 1991).

4.1 Subsurface Investigation

Monitoring wells MW101, MW201 and MW202 were evaluated for this report. These boreholes were advanced to depths ranging from 6.1 metres below ground surface (mbgs) to 8.2 mbgs, and the monitoring wells were installed at depths ranging from 5.2 mbgs to 6.1 mbgs.

The details of borehole advancement are summarized below in **Table 4.1.1**, their locations are presented in **Figure 2**, and their corresponding borehole logs are provided in **Appendix B**.

Table 4.1.1 Borehole Details						
Well ID	Date Installed	Ground Elevation (masl)	Borehole Depth (mbgs)	Borehole Depth (masl)	Monitoring Well Depth (mbgs)	Monitoring Well Depth (masl)
MW101	2022-10-24	129.6*	8.2	121.4	5.2	124.4
MW201	2022-11-28	127.9 ⁺	6.1	121.8	6.1	121.8
MW202	2022-11-28	127.8 ⁺	6.1	121.7	6.1	121.7

*Ground elevation obtained from Terrapex borehole log 2022. (Appendix B)

+Ground elevation estimated using site survey

GEMS characterized the site stratigraphy based on overburden soils encountered during drilling, in descending order from the surface, as shown in **Table 4.2**:

Table 4.1.2 Site Stratigraphy			
Asphalt	The Site is overlain by a parking lot composed of approximately 5 cm of asphaltic concrete.		
Clayey Silty Sand to Silty Sand (Fill)	In all boreholes, approximately 1.4 to 2.6 metres of fill was encountered comprised of dry to moist, clayey silty sand to silty sand with traces of gravel.		
Clayey Silt	A continuous layer of dark brown or grey clayey silt till was encountered in boreholes MW201 and MW202. The top depth of this unit is at an elevation of approximately 126.3 masl and has a thickness of roughly 0.6 metres.		
Fine Sand	A thin, 0.3 metre layer of light brown, fine sand with traces of gravel was observed in MW201 at an elevation of 125.6 masl		
Silty Sand	Dark grey or brown silty Sand layers were encountered in all three boreholes. The top of this layer ranged from 126.8 masl to 124.8 masl and had a thickness of 4.5 metres in MW101 and MW202. Two separate Silty sand units were observed in MW201, a shallow one at approximately 125.6 with a thickness of 0.5 m and a deeper one at 123.3 with a thickness of 2.0 metres. This layer was described as moist to saturated in MW101 and moist to wet in MW201 and MW202.		
Silty Clay	A layer of moist to wet, dark grey silty clay with trace sand or gravel was encountered in MW101 and MW201 at 123.7 masl to 124.9 masl, respectively. This unit had a thickness of 1.9 metres in MW101 and 1.4 metres in MW201 and was absent in MW202, therefore this layer is interpreted to thin westward across the site.		

This characterization is consistent with what was expected from the available published literature and mapping information.

4.2 Stratigraphy and Hydrogeological Conditions

Across the Site, beneath the asphalt/fill materials, the native soils consist of predominately clayey silt, silty sand, and silty clay materials with thin, discontinuous layers of fine sand. These materials are interpreted to be part of the Lower Newmarket till formation as shown in the site geologic cross-section provided in **Appendix C** and are consistent with the soil descriptions described in section 4.0. Bedrock was not encountered in any of the boreholes.

It is interpreted that most of the dewatering for the proposed development will occur within sandy silt, silty clay, and silty sand materials of the Lower Newmarket till formation.

The nearest surface water feature is Black Creek, situated approximately 500 m to the west of the Site, bordering Coronation Park and Keelesdale North Park. The Humber River is approximately 3 kilometres (km) west of the site and Lake Ontario is located 6 km to the south (**Figure 1**).

Local groundwater flow has been interpreted from site water levels to be roughly westward, towards Black creek and the Humber River. Regional groundwater flow is southward towards Lake Ontario.

4.3 Groundwater Level/Elevation Monitoring

From 28 November 2022 to 13 December 2022, GEMS carried out three (3) weekly Site visits to obtain water level measurements from the following three (3) monitoring wells installed on the Site: MW101, MW201 and MW202.

The locations of these monitoring wells are shown on **Figure 2**, and the well installation details and groundwater monitoring results are summarized in **Table 4.3**.

Table 4.3 Monitoring Well Summary and Groundwater Elevations						
	Carooned Linit and	Ground Elevation (masl)	Static Water Level Measurements			
Well ID	Screen Depth (masl)		Date (YYYY-MM-DD)	Water Level (mbgs)	Water Elevation (masl)	Average (masl)
			2022-11-28	4.51	125.09	
MW101	Silty Sand 127.7 – 124.6	129.6*	2022-12-08	4.65	124.95	124.99
			2022-12-13	4.66	124.94	
	Silty Sand 124.9 – 121.8	127.9+	2022-11-28	3.74	124.16	
MW201			2022-12-08	3.69	124.21	124.17
		12110		2022-12-13	3.76	124.14
	Sandy Silt, Silt and Silty Sand 124.8 – 121.7	Sandy Silt Silt and	2022-11-28	3.43	124.38	
MW202		127.9*	2022-12-08	3.43	124.37	124.36
			2022-12-13	3.46	124.34	

Table 4.3 Monitoring Well Summary and Groundwater Elevations

*Ground elevation obtained from Terrapex borehole log 2022 (Appendix B)

+Ground elevation estimated using site survey

Note: Groundwater level monitoring is on-going to achieve 6 measurements in all monitoring wells

During the monitoring period, groundwater elevations at the Site ranged from 124.14 masl to 125.09 masl, with the highest observed in MW101 on 28 November 2022. Based on a review of the Oak Ridges Moraine Groundwater Program Data, the groundwater table in this area generally ranges from approximately 126.8 masl to 124.5 masl, sloping downward to the west (ORMGP, 2022 (**Appendix C**).

All wells are screened within the Newmarket Till and are considered hydrologically connected to each other within an unconfined water bearing zone. Groundwater elevations show the local groundwater flow is westward towards Lake Ontario.

Based on the preliminary architectural drawings (gh3, 2022) the proposed underground parking and associated excavation activities will occur within the Newmarket Till material to a maximum depth of approximately 114.5 masl.

4.4 Single Well Response Tests

On 8 December 2022, GEMS was on-Site to complete single well response tests (SWRTs) in three (3) monitoring wells: MW101, MW201, and MW202.

For each SWRT, a 'slug' of water was removed from the well, and the water level recovery was monitored for 30 minutes thereafter, or until the well returned to its static level. Estimations of hydraulic conductivity were made in AQTESOLV Aquifer Test Analysis Software using the Hvorslev Method (Hvorslev, 1951) based on the rate of recovery. Hydraulic Conductivity analysis graphs for each SWRT are provided in **Appendix D**.

The Hvorslev Method was chosen for its versatility and is based on the following assumptions:

- Water-bearing unit has infinite areal extent;
- Water-bearing unit is homogeneous and of uniform thickness;
- Water bearing unit is confined or unconfined;
- Water table is initially horizontal before testing;
- The well is fully or partially penetrating into the water-bearing unit;
- The slug is instantaneously removed from the well; and,
- Groundwater flow is steady.

After analyzing the slug test data from MW101 it was determined that the well screen was likely inhibiting recovery and therefore this data was not included. The estimated hydraulic conductivity results for the SWRTs are presented in **Table 4.4**.

-	-				
Well ID	Screened Unit	Screen Interval (masl)	SWRT	Hydraulic Conductivity (m/s)	Geometric Mean (m/s)
		124.9 – 121.8	1	1.3 x 10 ⁻⁷	
MW201	Silty Clay and Silty Sand		2	1.5 x 10 ⁻⁷	1.2 x 10 ⁻⁷
			3	9.2 x 10 ⁻⁸	
	Silty Sand and Sandy Silt	124.8 – 121.7	1	1.6 x 10 ⁻⁷	1.6 x 10 ⁻⁷
MW202			2	1.3 x 10 ⁻⁷	
			3	2.0 x 10 ⁻⁷	
Geometric Mean Hydraulic Conductivity (m/s) for all SWRTs				1.4 x 10-7	
		Highest Hydraulic C	onductivity	(m/s) for all SWRTs	2.0 x 10-7

 Table 4.4: Hydraulic Conductivity Results from Single Well Response Tests

The hydraulic conductivity results ranged from 9.2 x 10^{-8} m/s to 2.0 x 10^{-7} m/s, with an overall geometric mean of 1.4 x 10^{-7} m/s.

The borehole records (**Appendix B**) indicate that all tested wells are screened across the same waterbearing unit (Thorncliffe Formation) in materials, including silty sand, sandy silt, and silt. The geometric mean of hydraulic conductivity estimates (10⁻⁷ m/s) is within the textbook range for silty materials denoted by Freeze & Cherry (1979).

As a conservative estimate, GEMS recommends using the highest hydraulic conductivity result of 2.0×10^{-7} m/s to forecast the overburden dewatering rate.

4.5 Groundwater Quality

The water quality discharged by the dewatering system during construction is expected to be similar to in-situ groundwater quality.

On 5 December 2022, a groundwater sample was collected from borehole MW101 to characterize the insitu groundwater quality at the Site. The water quality analysis results are included in **Appendix E**.

Water quality results were compared to the following criteria:

- City of Toronto Storm Sewer Discharge Use By-Law
- City of Toronto Sanitary and Combined Sewers Discharge Guidelines

The water quality met the City of Toronto Sanitary and Combined Sewers Discharge Guidelines for all parameters. It exceeded the City of Toronto Storm Sewer Discharge Use By-law criteria for Total Suspended Solids (TSS).

Exceedances to these criteria were identified and are summarized in **Table 4.5**, with the criteria exceeded in bold.

Table 4.5: Water Quality Results Exceeding Discharge Criteria				
Water Quality Parameters	Units	MW101 Results	Storm Criteria	Sanitary Criteria
Total Suspended Solids (TSS)	mg/L	41	15	350

Groundwater quality should be expected to change over time during active construction dewatering. A dewatering contractor should assess the groundwater quality before any water-taking and discharging activities.

5.0 Short and Long-Term Discharge Rates

5.1 Short-Term Construction Dewatering

A construction dewatering system design may include well points, several sump pumps, and a network of gravity drains. Implementing a dewatering system is the responsibility of the property owner, and a qualified dewatering contractor with experience in construction dewatering should be retained to design and outline the methodology of the dewatering system. Construction will require that the groundwater level be lowered to a depth of at least 1.0 m below the excavation invert.

Input Parameter	Value	Notes
Ground Surface Elevation	129.5 masl	Highest surface elevation based on provided geotechnical borehole logs (Appendix B).
Finished Floor Elevation (FFE)	115.5 masl	The lowest finished floor elevation was assumed to be 6 metres below the surface based on two levels of underground parking as presented in the architectural drawings (Appendix A).
Excavation Invert	114.5 masl	Assumed 1 metre below FFE for raft slab.
Dewatering Target Elevation	113.4 masl	Assumed to be 1.0 metre below the excavation invert.
Excavation Area	30 m x 75 m	Simplified "rectangular" dimensions of the excavation.
Max. Anticipated Groundwater Elevation	125.1 masl	Highest measured groundwater elevation at the Site (MW101 11/28/2022)
Base of Aquifer	110.7 masl	Aquitard depth based on ORMGP cross section (Appendix C).
Hydraulic Conductivity (K)	6.5 x 10 ⁻⁸ m/s	Highest K value estimated from SWRT tests (MW202).

Table 5.1: Dewatering Estimate Assumptions

Dewatering estimates have been calculated assuming an excavation invert of 114.5 masl. On-Site water level measurements show the water table ranges between approximately 125.1 and 124.1 masl. The maximum anticipated groundwater level was 125.1, based on the highest measured water levels throughout the monitoring period (MW101, 11/28/2022). The maximum anticipated groundwater elevation is 10.6 metres above the assumed excavation invert, and therefore, short-term construction dewatering is anticipated.

A conceptual well-point dewatering model has been used to forecast the dewatering rates. As such, a greater drawdown would be required at the pumping wells themselves to achieve the target level in the central area of the base of the excavation. For calculations, the bottom tips of dewatering wells have been assumed to be located 3.0 m deeper than the excavation invert, with water levels in those dewatering wells 2.0 m below the excavation invert.

A schematic diagram of a section of loop dewatering is shown below in **Drawing 1**. The values for indicated parameters are as follows:

E1 =	Approximate ground level	129.5 masl
E2 =	Maximum hydraulic head	125.1 masl
E3 =	Lowest point of excavation	114.5 masl
E4 =	Target water level below excavation	113.5 masl
E5 =	Target water level in wellpoints	112.5 masl
E6 =	Dewatering wellpoint tips	111.5 masl

Drawing 5.1 Schematic diagram showing a cross-section of loop dewatering at two well points on opposite sides of the property.

5.2 Radius of Influence

Calculations for dewatering effects require an estimation of the radius of influence (ROI). Estimates of ROI for a rectangular excavation are calculated using the following formula adapted from the Jacob equation without recharge (Cooper, 1946).

$$\mathbf{R_o} = \mathbf{r_w} + \sqrt{\frac{\mathbf{T} \cdot \mathbf{t}}{\mathbf{C_4} \cdot \mathbf{C_s}}}$$

Where:

• t = Duration of Dewatering

- T = Transmissivity in m²/sec
- C_s = Storage Coefficient (no units)
- C₄ = Constant (4790) (no units)
- r_w = Effective well radius of open excavation in metres.

The effective radius of the open rectangular excavation has dimensions of a and b:

$$r_w = \frac{a+b}{\pi}$$

Because the analytical solutions used to estimate dewatering volumes are based on a rectangular excavation, the Site's irregular shape was simplified for the purpose of the calculations. This was achieved by using a rectangle with an area equal to that of the proposed excavation (1,350 m²).

Simplified dimensions:

• Dewatering Area: 45 m x 30 m

Assuming 40 days of pumping for the steady-state drawdown, the ROI extending outward from the perimeter of the excavation is estimated to be 32 m. This ROI is depicted by the Zone of Influence (ZOI) shown in **Figure 4**. This is the maximum possible ROI assuming:

- I. No recharge;
- II. Wells are located around the perimeter of the rectangular excavation; and,
- III. The bottom tips of wells are approximately 3.0 m deeper than the assumed foundation invert depth.

It should be noted that ROI estimates are based on simplified standard textbook modelling and are approximations of complex geological conditions that do not account for recharge effects. Based on observations and the documented Site condition, a typical recharge effect is anticipated. Subsurface materials are variable in structure, soil texture, thickness, and other factors, and thus conditions affecting the extent of the ROI may be present which were not identified by Site boreholes.

A conservative approach to forecasting the maximum pumping rates and associated ROI was taken to account for uncertainties associated with varying subsurface soil conditions and fluctuations in groundwater elevations. The value inputs to the equation were conservatively biased to predict the maximum pumping rates of dewatering required to draw down groundwater to the target levels. This conservative approach reduces the possibility of unforeseen hydrogeological conditions encountered, which may require a higher dewatering rate.

5.3 Pumping Rate Calculations

The calculation for a rectangular excavation is based on a scenario that models radial flow into a well with a calculated equivalent radius reflective of the area to be dewatered. Dewatering was simulated by analyzing radial flow to a well in an unconfined aquifer. Flows toward the well were simulated using the following formula (J.P.Powers, 2007):

Where the symbols and input values are as follows:

- Q = Discharge flow (L/min)
- K = Hydraulic conductivity = 2.0 x 10⁻⁷ m/s
- H = Pre-construction static water level = 125.3 masl
- h = Target water level = 113.5 masl
- R_o = Radius of influence = 32.0 m
- r_w = Effective well radius of open excavation

The simplified shape of the excavation used for the pumping rate calculations is assumed to account for the full dimensions of the underground structure, as displayed in **Figure 4**.

5.4 Construction Dewatering Rates

Assuming the dewatering wells are installed to elevations of 111.5 masl, the estimated maximum dewatering rate for initial drawdown (7 days) is 74,880 L/day (52 L/min), and during steady-state drawdown (40 days) is 32,728 L/day (23 L/min). The dewatering calculations are provided in **Appendix E.**

For the purpose of permitting applications for dewatering, GEMS recommends using the forecasted 7-day pumping rate with the application of a safety factor of 2. The resulting pumping rate after applying the safety factor is 149,760 L/day (104 L/min). This forecasted dewatering pumping rate will allow for uncertainties and variability in the range of hydraulic conductivity.

Additionally, it is necessary to account for contributions to the dewatering volume from significant precipitation events. Assuming a rectangular excavation with dimensions of 45 m x 30 m for underground parking, the total surface area of the excavation will be 1,350 m². Anticipating a 15 mm daily rainfall event, the volume of rainwater contributed to this area would be 20,250 L.

Adding the rainfall contribution to the dewatering rate with the applied safety factor brings the forecast maximum pumping rate to 170,010 L/day (118 L/min).

A dewatering contractor should be retained to evaluate the dewatering methods. If dewatering wells deeper than 3.0 m below the assumed excavation invert depth are required, the discharge rates should be re-evaluated by GEMS.

A summary of the construction dewatering rates is outlined in **Table 5.3.**

•	-			
Downtowing	Excavation Area			
Dewatering	Dewatering Rate	2.0 Safety Factor		
15 mm Rainfall Contribution	20,250 L/day (14 L/min)	-		
Initial Drawdown for Excavation	74,880 L/day (50 L/min)	149,760 L/day (104 L/min)		
Total Volume	95,130 L/day 66 L/min	170,010 L/day* (118 L/min)*		

Table 5.3 Summary of Construction Dewatering Rates

*Rounded for permitting

Based on the above estimate, an Environmental Activity and Sector Registry (EASR) is required for water taking during the dewatering and construction of the proposed development, as the forecast dewatering rate is greater than 50,000 L/day.

A short-term discharge agreement with the City of Toronto will be required before discharging water into any sewers owned by the City.

5.5 Long-Term Seepage Rates

It has been communicated with GEMS that the foundation will be constructed as water-tight, therefore no long-term discharge of groundwater is anticipated at the Site. The elimination of groundwater taking over the lifetime of the building will not adversely impact the aquifer over the long-term. The design and implantation of the water-tight structure is the responsibility of the construction team.

6.0 Potential for Adverse Effects

The following section identifies the potential for adverse environmental effects resulting from the proposed construction dewatering program.

6.1 Regulated and Sensitive Areas

According to The Ministry of Environment, Conservation and Parks' (MECP) Source Protection Information Atlas (MECP, 2021), the Site is not located in an area of development control as defined by the Niagara Escarpment Planning & Development Act. The Site is also not located in the Oak Ridges Moraine Conservation Area as defined by the Oak Moraine Conservation Plan.

There is no Toronto and Region Conservation Authority (TRCA) regulated areas within the zone of influence of the Site.

6.2 MECP Well Records and Groundwater Resources

The area within 500 m of the Site is serviced by the City of Toronto municipal water. The City of Toronto obtains its water supply from Lake Ontario. Therefore, there is no potential for groundwater interference complaints during construction dewatering activities.

A copy of the Ministry of Environment, Conservation and Parks (MECP) well listings within 500 m of the Site are provided in **Appendix E**. The wells within 500 m of the Site are displayed in **Figure 3**.

There are two hundred and twenty-nine (229) wells identified within the 500 m area surrounding the Site. There are thirty-nine (39) observation wells, twenty-nine (29) test holes, eighteen (18) monitoring and test holes, seventy-eight (78) dewatering wells, eighteen (18) wells with an unknown status. The remaining fourty-seven (47) wells are listed as abandoned. Therefore, no water supply wells, or domestic wells are expected to be impacted by construction dewatering. Water-taking activities related to construction dewatering are not expected to impact any wells near the Site, and no monitoring is recommended.

An MECP-licensed drill contractor should properly decommission all monitoring wells at the Site prior to the demolition of the existing building.

6.3 Settlement

Expectations regarding settlement are to be addressed in a separate report provided by Terrapex Environmental Ltd.

6.4 Recommended Additional Fieldwork and Monitoring

The proposed monitoring and additional fieldwork are recommended during temporary construction dewatering:

If dewatering discharge is directed to the City of Toronto sanitary or storm sewer, GEMS recommends the following monitoring for water quality:

Location:	Discharge outlet pipe or sampling port of the dewatering system.
Parameters:	City of Toronto sewer use By-Law
Schedule:	First sample is recommended to be obtained within the first two (2) days of discharge start.
	Routine samples are recommended to be obtained monthly thereafter.
Trigger:	If one or more parameters have a concentration above the receiving sewer By-Law limit.
Mitigation:	Filtration/treatment approaches would be reviewed on a specific basis. Upon installation of a filtration/treatment system, an additional sample should be performed to ensure compliance with the criteria.
Reporting:	As required, all results are reported to the Project supervisor for submission to the City of Toronto or the MECP.

Monitoring of the discharge water quantity is required to ensure compliance with the discharge agreement and/or EASR conditions. GEMS recommends the following program for monitoring the groundwater taking and discharge volumes:

Location: A flow meter attached to the discharge pipe of the dewatering system.

Parameter:	Total volume of discharge, date, and time of measurement.
Schedule:	Minimum of daily recording by on-Site personnel, with values reported to the Project supervisor weekly for submission to the City, Region and/or MECP.
Trigger:	Discharge volume exceeds the maximum rate of dewatering specified in the discharge agreement and/or the EASR.
Mitigation:	Immediately reduce the pumping rate so that discharge is within permitted limit.
Reporting:	Values reported to the Project supervisor weekly for submission to the City, Region and/or MECP.

Additional Fieldwork

Well decommissioning is required before construction. A licensed well contractor should decommission any inactive wells within the Site, according to Ontario Regulation 903. This regulation applies to any existing monitoring wells.

7.0 Conclusion

Based on the above analysis, the following conclusions and recommendations are offered for the proposed reconstruction of 2636 – 2654 Eglinton Avenue West, Toronto, Ontario:

- The geology at the Site is composed of medium to fine-textured glaciolacustrine deposits of fine sand to silty clay in the Lower Newmarket Till formation. Excavation and dewatering activities will occur in predominately Sandy Silt, Silty Clay, and Silty Sand materials.
- The groundwater elevation at the Site ranged between 124.1 125.1 masl over the monitoring period (November to December 2022).
- Hydraulic conductivity tests for the water-bearing unit ranges from 9.2×10^{-8} m/s to 2.0×10^{-7} m/s, with a geometric mean of 1.4×10^{-7} m/s.
- The water quality met the City of Toronto Sanitary and Combined Sewers Discharge Guidelines for all parameters. It exceeded the City of Toronto Storm Sewer Discharge Use By-law criteria for Total Suspended Solids (TSS).
- The maximum construction dewatering rate to maintain water levels below the estimated maximum depth of excavation is 74,880 L/day (52 L/min).
- The estimated maximum dewatering rate for 15 mm rainfall event is 20,250 L/day (14 L/min).
- With the application of a safety factor of 2, the total maximum forecasted dewatering rate is 149,760 L/day (104 L/min) for groundwater entering the excavation area. For permitting purposes, GEMS has rounded this number and added the rainfall volume for a total of 170,010 L/ day (118 L/min).
- The zone of influence for construction dewatering is estimated to extend 32 metres from the edge of the excavation area.
- The maximum finished floor elevation is roughly 10.8 metres below the water table, but the foundation is to be constructed as watertight and therefore long-term discharge of groundwater is not anticipated.

• Well decommissioning will be required before construction. A licensed well contractor should decommission any inactive wells within the Site, according to Ontario Regulations.

Groundwater Environmental Management Services Inc. (GEMS) has prepared this report for our client and its agents exclusively. GEMS accepts no responsibility for any damages that third parties may suffer resulting from decisions or actions based on this report.

The findings and conclusions are site-specific and were developed in a manner consistent with the level of care and skill normally exercised by environmental professionals currently practicing under similar conditions in the area. Changing assessment techniques, regulations, and site conditions mean that environmental investigations and their conclusions can quickly become dated, so this report is current up to two years from the published date. The report should not be used after that without GEMS' review/approval.

The Project has been conducted according to our instructions and work program. Additional conditions and limitations on our liability are outlined in our work program/contract. No warranty, expressed or implied, is made.

8.0 References

Chapman, L. J., & Putnam, D. F. (2007). The Physiography of Southern Ontario: Ontario Geological Survey, 3rd edition. Ontario Geological Survey.

City of Toronto Zoning By-law 569-2013 (2020). Zoning Map. City of Toronto.

Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs, New Jersey: Prentice Hall. ISBN 0-13-365312-9.

gh3. (2022, October 6). Schematic Plans – 2636 Eglinton Avenue West.

Google Earth. (2022). [Street view of 2636 Eglinton Avenue West, Toronto, ON]

Hvorslev, M.J., 1951. Time Lag and Soil Permeability in Ground-Water Observations, Bull. No. 36, Waterways Exper. Sta. Corps of Engrs., U.S. Army, Vicksburg, Mississippi, pp. 1-50.

J.P.Powers, A. C. (2007). Construction Dewatering and Groundwater Control, New Methods and Applications.

Mansur, C.I., and R.I. Kaufman, 1962: Dewatering, Chapter 3 in Foundation Engineering, G.A. Leonards (ed.), McGraw-Hill Book Company, New York, New York, pp. 241-350.

MECP. (2021, March). Source Protection Information Atlas. Retrieved from https://www.lioapplications.lrc.gov.on.ca/SourceWaterProtection/index.html?viewer=SourceWaterProt ection.SWPViewer&locale=en-CA

OGS. (1991a). Quaternary Geology of Southern Ontario Map 2556. Southern sheet. Queens Printer for Ontario.

OGS. (1991b). Bedrock Geology of Ontario of Southern Ontario Map 2544. Southern sheet. Queens Printer for Ontario.

ORMGP (2022). Cross Sections Preview Versions 2.0. Retrieved from https://partners.oakridgeswater.ca/CrossSection

Powrie, W., and M. Preene, 1992: Equivalent well analysis of construction dewatering systems, Géotechnique, vol. 42, no. 4, pp. 635-639.

Zhang, Z.F., P.H. Groenevelt, and G.W. Parkin. 1998. The well shape-factor for the measurement of soil hydraulic properties using the Guelph Permeameter. Soil Tillage Res. 49:219-221.

9.0 Closing

We trust this information meets your current requirements. Please do not hesitate to contact the undersigned should you have any questions or require additional information.

Yours truly,

Groundwater Environmental Management Services Inc.

Prepared By:

Kenley Bairos Kenley Bairos, M.Sc., GIT,

Hydrogeologist

Mike Francis, B.Sc., C.Tech, P.Geo

Hydrogeologist

Regional Location Plan

Detailed Site Plan

Surface Geology and MECP Wells

Dewatering Area Plan

	10 23 6 10 20 23 6 10 20 22 0 49 7 40 49 39 41 45 35 27 34 38 29 16 17 12 26 44 44 49 8 8	$ \begin{array}{c} 11 \\ 11 \\ 28 \\ 5 \\ 5 \\ 31 \\ 19 \\ 19 \\ 19 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$			eginton Avenue West
Legend Site: 2636-2654 Eglinton Ave West,	Keele Street		Cient:		0 25 50 Date:
Toronto, Ontario	GEI	M5 .	Fora Develo	opments Inc.	December 2022
Badius of influence (30m)	Groundwater Environment	Figure No	Project No.	Drawn By:	1:1,000
MFCP well within radius of influence		A			Source:
Monitoring well	Dewatering Plan	4	22-1464	JF	ESKI Basemap WGS1984 UTM Zone 17N

Appendix A

Architectural Drawings

	1:150	3 6	9	12	15m
Кκ	CMAR SURVE	YORS LTD.	2022		
METR	AND CAN BE	E CONVERTED T	O FEET BY DIV	DING BY 0.3048	INCO
BEARIN DBSERV DBSERV IETWOI 0, CEI MERCA DISTAN CONVER ACTOF	ING GS SHOWN HERE /ED REFERENCE RK AND ARE REF NTRAL MERIDIAN TOR PROJECTION, CES SHOWN HER RTED TO GRID DI R OF 0.99989.	ON ARE GRID D POINTS 'A' AND ERRED TO THE 79'30' WEST LO NAD 83 (CSR EON ARE GROU STANCES BY M	DERIVED FROM 'B', USING TH 3' MTM COOR DNGITUDE. (3' S)(2010)). ND DISTANCES ULTIPLYING BY	GPS OBSERVATIO TE LEICA SMARTI DINATE SYSTEM, MODIFIED TRANS AND CAN BE A COMBINED SC	ONS OF NET RTK ZONE VERSE CALE
ELEVAT CITY OF DF 140	ATION IONS SHOWN HER TORONTO BENO .711 METRES (CO	REON ARE GEOL CHMARK No. YT GVD28:PRE78).	DETIC AND ARE 259, HAVING A	E RELATED TO AN ELEVATION	
	UND MONUMENTS	ARE BY CITY	OF TORONTO	SURVEYS,	
UNLESS	UTHERWISE NO	IED.		ASSOCIATION O	F ONTARIO
	ND DENOTES SURY DENOTES SURY DENOTES IRON DENOTES CUT	VEY MONUMENT VEY MONUMENT BAR ARROW	FOUND PLANTED	V - 2 6	136
CC CP (M)	DENOTES CUT DENOTES CON DENOTES MEA	CROSS CRETE PIN SURED		THIS PLAN IS N	OT VALID
(S) (D1) (D2) (D3) (P1) (P2)	DENOTES SET DENOTES INST DENOTES INST DENOTES INST DENOTES PLAN DENOTES EXPE	RUMENT CY3420 RUMENT CY575 RUMENT TB8082 66R-27552 ROPRIATION PLA	026 540 26 N 7650 (L-16	UNLESS IN IS AN ORIGINAL O ISSUED BY THE S In accordanc Regulation 1026, S 8–16)	EMBOSSED COPY SURVEYOR e with ection 29(3).
(P3) (P4)	DENOTES PLAN DENOTES PLAN DATE	A 64R-1764 A BY SPEIGHT, D MARCH 27,	VAN NOSTRANE), WARD & ANDE	RSON, O.
(P5) (P6)	DENOTES SKET DATE DENOTES SKET DATE	TCH OF SURVEY ED JULY 7, 194 TCH OF SURVEY ED DECEMBER 9	BY C. REUBEN 8 BY C. REUBEN , 1950	N, O.L.S., N, O.L.S.,	
(P7) (P8) (P9) (P10)	DENOTES PLAN DENOTES PLAN DENOTES PLAN DENOTES EXPF	↓ 64R-14602 ↓ 66R-27401 ↓ 66R-27156 ROPRIATION PLA	N AT3845018		
(P11) (TOR) (BR)	DENOTES EXPR DENOTES CITY DENOTES TIES	OPRIATION PLA OF TORONTO S TO BRICK	N AT4916073 SURVEYS		
(CBK) (CF) (ST) EXP.	DENOTES TIES DENOTES TIES DENOTES TIES DENOTES EXPE	TO CONCRETE TO CONCRETE TO STONE ROPRIATION	FOUNDATION		
NUL NLL UL	DENOTES NO L DENOTES NO L DENOTES UPPI	JPPER LIMITATIC LOWER LIMITATIC ER LIMITATION I	ONS ONS N METRES		
Ð	DENOTES LOWE DENOTES A HO	ER LIMITATION II DRIZONTAL PLAI	N METRES NE CONTROLLEI	D BY GEODETIC E	ELEVATION
. THE BAS REG DUR	EY REPORT RE-ESTABLISHME ED ON INFORMAT STERED PLANS A ING THE COURSE	ENT OF THE SU ION CONTAINED AND ON THE EV OF PREPARING	BJECT PROPER IN THE RELEV IDENCE OF PRI THE SUBJECT	TY BOUNDARIES ANT TITLE DOCUI OR SURVEYS FOI SURVEY.	IS MENTS, JND
2. THE IMPF	TYPE AND LOCA OVEMENTS, FENC SHOWN ON THE S	TION OF THE E SES ETC., ON O SURVEY PLAN.	XISTING BUILDIN R NEAR THE S	NGS AND OTHER UBJECT PROPER	TY ARE
5. COM THIS	PLIANCE WITH MU REPORT.	JNICIPAL ZONIN	G REQUIREMEN	ts is not certi	FIED BY
. SUB 1049	JECT LANDS COM 96-0080(LT) AND	IPRISE ALL OF 1) 10496-0081(L	PIN 10496-007 .T).	78(LT), 10496-00	079(LT),
5. PIN AND DEC 2 A EXPI PAR AT4	10496-0078(LT) 2, EXPROPRIATIO MBER 31, 2020; VD 3, EXPROPRIA RED DECEMBER 3 TS 1, 2 AND 3, 916073, EXPIRED	- SUBJECT TO ON PLAN AT384 SUBJECT TO T TION PLAN AT4 31, 2021; SUBJI EXPROPRIATION DECEMBER 8,	TEMPORARY E 5018 AS IN IN EMPORARY EA: 302593 AS IN ECT TO TEMPO PLAN AT49160 2019.	EASEMENT OVER ST. AT3845018, SEMENT OVER PA INST. AT430259 RARY EASEMENT 073 AS IN INST.	PARTS 1 EXPIRED ARTS 1, 03, OVER
5. PIN 3 A EXPI PAR AT4. EAS	10496-0079(LT) ND 4, EXPROPRIA RED DECEMBER TS 4, 5 AND 6, 302593, EXPIRED EMENT OVER PAF	- SUBJECT TO TION PLAN AT3 31, 2020; SUBJ EXPROPRIATION DECEMBER 31, RTS 4, 5 AND 6 EXPROPRIATION	TEMPORARY E 845018 AS IN ECT TO TEMPO PLAN AT4302 2021; SUBJEC 5, EXPROPRIATI	EASEMENT OVER INST. AT394501 RARY EASEMENT 593 AS IN INST. TTO TEMPORAR ON PLAN AT4916	PARTS 8, OVER Y 5073 AS
7. PIN AND	10496-0080(LT) 6, PLAN 66R-2	- SUBJECT TO	EASEMENT IN ST. AT3614801.	GROSS OVER PA	ARTS 5
I. PIN AND	10496-0081(LT) 8, PLAN 66R-2	- SUBJECT TO 7401 AS IN INS	EASEMENT IN ST. AT3651659.	GROSS OVER PA	ARTS 7
ΤΟΤΑ	L SITE ARE	A = 1352	.6 m²		
SURV	EYOR'S CER	RTIFICATE			
CERTI 1. THIS THE UND	FY THAT: SURVEY AND PL SURVEYS ACT, T ER THEM.	AN ARE CORRE HE SURVEYORS	CT AND IN AC ACT AND THE	CORDANCE WITH REGULATIONS N	IADE
2. THE	SURVEY WAS CO	MPLETED ON T	HE DAY	OF	2022
		, 2022	WALD	EMAR GOLINSKI	>
DATE_		022 KRCM	AR SURVE	YORS LTD.	tion
DATE	DPYRIGHT 2 is documen authorized use, in wh	t has been reproduction ole or in p	on, distrib part, is sti	rictly prohib	oited.
OATE C CC Th UI or MUNIC	DPYRIGHT 2 is documen authorized use, in wh DPAL ADDRESS:	t has been reproduction ole or in p No.s 1856 & 1856A P RAWN: C1	on, distrib part, is str EELE ST. AND No.s CHECKED	2636 TO 2654 EGLINT W.G. JOB NO	Dited. IN AVE. W. 22-0

Copyright is that of the Architect. Any version of this drawing reproduced by any means from any media without prior written approval of the Architect is to be read for information only. The Architect is not liable for any loss or distortion of information resulting from subsequent reproduction of the original drawing. <u>GENERAL NOTES:</u> 1. Drawings are not to be scaled. Contractor will verify all existing conditions and dimensions required to perform the Work and will report any discrepancies with the Contract Documents to the Architect before commencing work. 2. The Architectural Drawings are to be read in conjunction with all other Contract Documents including the Project Manuals and the Structural, Mechanical and Electrical Drawings. In cases of difference between the Consultants' documents with respect to the quantity, sizes or scope of work, the greater shall apply. 3. Positions of exposed or finished Mechanical or Electrical devices, fittings and fixtures are indicated on the Architectural Drawings. Locations shown on the Architectural Drawings shall govern over Mechanical and Electrical Drawings. Mechanical and Electrical items not clearly located will be located as directed by the Architect. 4. Dimensions indicated are taken between the faces of finished surfaces unless otherwise noted. 5. The architect has not been retained for supervision of construction and assumes no responsibility for means, methods and techniques of construction. These documents are not to be used for construction unless specifically noted for such purpose.

gh3*

Rev. Date Issued

gh3* 55 OSSINGTON AVE, SUITE 100 Toronto, ON, Canada M6J 2Y9 416 915 1791

FØRA

FORA 2634, 2636, 2640, 2642 & 2654 EGLINTON AVENUE WEST AND 1856 & 1856A KEELE STREET

SCALE PROJECT NO. 202202 ISSUE DATE DEC. 8, 2022

A0.06

Architect is to be read for information only. The Architect is not liable for any loss or distortion of information resulting from subsequent reproduction of the <u>SITE PLAN LEGEND</u> original drawing. <u>GENERAL NOTES:</u> 1. Drawings are not to be scaled. Contractor will verify +XXX.XX PROPOSED ELEVATION all existing conditions and dimensions required to perform the Work and will report any discrepancies with the Contract Documents to the Architect before XXX.XX EX EXISTING ELEVATION commencing work. 2. The Architectural Drawings are to be read in conjunction with all other Contract Documents XXX.XX AD AREA DRAINAGE including the Project Manuals and the Structural, Mechanical and Electrical Drawings. In cases of difference between the Consultants' documents with XXX.XX SW STORM WATER respect to the quantity, sizes or scope of work, the greater shall apply. 3. Positions of exposed or finished Mechanical or XXX.XX CB CATCH BASIN Electrical devices, fittings and fixtures are indicated on the Architectural Drawings. Locations shown on the Architectural Drawings shall govern over Mechanical and Electrical Drawings. Mechanical and Electrical items not clearly located will be located as directed by PROPERTY LINE the Architect. 4. Dimensions indicated are taken between the faces of finished surfaces unless otherwise noted. - - - - - - - - PROPERTY LINE EASEMENT 5. The architect has not been retained for supervision of construction and assumes no responsibility for - - - - - - - - FIRE TRUCK ROUTE means, methods and techniques of construction. 6. These documents are not to be used for construction unless specifically noted for such purpose. PARKING STRUCTURE BELOW LOBBY INDOOR AMENITY RESIDENTIAL WASTE RETAIL RETAIL WASTE ELECTRICAL SUBSTATION ROOM LOADING / MOVING / RAMP MAIN RES ENTRANCE △ RES ENTRANCE NON-RES ENTRANCE 🔺 EXIT VEHICULAR ENTRANCE/EXIT ↔ FIRE HYDRANT EXTENT OF BELOW GRADE GARAGE SIAMESE CONNECTION 🗢 🗢 🌣 Street light PEDESTRIAN LIGHT \otimes Bollard Light • BOLLARDS _ _ _ _ _ I I I I I I BICYCLE SHARING STATION 📿 🗕 BIKE RING PROPOSED CANOPY TREE EXISTING TREE EXISTING TREE TO BE PROTECTED $(\cdot) (+)$ PROPOSED UNDERSTOREY TREE · * GRASSES AND SHRUBS HIGH-ALBEDO PAVERS SRI VALUE : 29 OR BETTER CONCRETE PAVING SRI VALUE : 29 OR BETTER CONCRETE PAVING SRI VALUE : 29 OR BETTER REFER TO LANDSCAPE PLAN FOR HARDSCAPE AND PLANTING DETAILS <u>NOTES</u> A TRAINED ON-SITE STAFF MEMBER MUST BE AVAILABLE TO MANOEUVRE BINS FOR THE COLLECTION DRIVER AND ALSO ACT AS A FLAGMAN WHEN THE TRUCK IS REVERSING. IN THE EVENT THE ON-SITE STAFF MEMBER IS UNAVAILABLE AT THE TIME THE CITY COLLECTION VEHICLES ARRIVAL AT THE SITE, THE COLLECTION VEHICLE WILL LEAVE THE SITE AND NOT RETURN UNTIL THE NEXT SCHEDULED COLLECTION DAY. 10 ADDITIONAL SHORT-TERM BICYCLE PARKING SPACES LOCATED IN PUBLIC BOULEVARD (BY-LAW TYPE G LOADING 6.1m MINIMUM VERTICAL CLEARANCE. MINIMUM 200mm 569-2013, AMMENDMENT 839-2022) THICK REINFORCED CONCRETE SLAB IN LOADING SPACE AND STAGING AREA.

Copyright is that of the Architect.

Any version of this drawing reproduced by any means from any media without prior written approval of the

(26 PROVIDED WITHIN PROPERTY ON L1, 50 PROVIDED ON P1)

- FLOOR GRADE NOT TO EXCEED +/-2% THE OVERHEAD DOOR ADJACENT TO THE TYPE G LOADING AREA WILL BE OPEN
- UPON THE ARRIVAL OF THE TRUCK TO ALLOW IT TO REVERSE FORM THE TYPE G LOADING AREA ENABLING IT TO EXIT THE SITE IN A FORWARD MOTION. A WARNING SYSTEM IS TO BE PROVIDED TO CAUTION MOTORISTS LEAVING THE PARKING GARAGE OF HEAVY VEHICLES WHEN LOADING. SYSTEM TO
- Include lights and signs. ALL ACCESS DRIVEWAYS TO BE USED BY THE COLLECTION VEHICLE TO HAVE A MAXIMUM GRADIENT OF 8%, HAVE A MINIMUM VERTICAL CLEARANCEOF 4.4 METERS THROUGHOUT, A MINIMUM WIDTH OF 4.5 METERS THROUGHOUT AND BE 6 METERS WIDE AT POINT OF INGRESS AND EGRESS.
- PROPOSED ACCESS ROUTE FOR WASTE COLLECTION VEHICLE TO HAVE MINIMUM 4.4M VERTICAL CLEARANCE THROUGHOUT AND DESIGNED TO
- SAFELY SUPPORT 35,000 KG. STRUCTURAL ENGINEER TO DESIGN AREA TO CONFORM AS FOLLOWS: (A) DESIGN CODE -ONTARIO BUILDING CODE (B) DESIGN LOAD -CITY BULK LIFT VEHICLE IN ADDITION TO BUILDING CODE REQUIREMENTS (C) IMPACT FACTOR -5% FOR MAX. VEHICULAR SPEEDS TO 15KM/H AND 30% FOR HIGHER SPEEDS
- NON-RESIDENTIAL COMPONENT WILL ONLY SCHEDULE USE OF THE TYPE G LOADING SPACE ON DIFFERENT DAYS FROM THE COLLECTION DAYS OF THE RESIDENTIAL COMPONENT TO ENSURE THAT THE TYPE G LOADING SPACE WILL BE VACANT FOR CITY WASTE COLLECTION.
- 4-FIRE ACCESS ROUTE MIN. 6m WIDE WITH 5m HEIGHT CLEARANCE, CHANGE IN GRADIENT NOT MORE THAN 8% IN 15m; LOAD SUPPORT SUFFICIENT FOR EQUIPMENT; SURFACE TO BE ACCESSIBLE IN ALL CLIMATICE CONDITION FOR ALL TRUCK DIAGRAM MOVEMENT REFER TO TRAFFIC CONSULTANT REPORT -PATH SHOWN FOR CONTEXT
- FIRE ACCESS ROUTE MIN. 6m WIDE WITH 5m HEIGHT CLEARANCE, CHANGE IN GRADIENT NOT MORE THAN 8% IN 15m; LOAD SUPPORT SUFFICIENT FOR EQUIPMENT; SURFACE TO BE ACCESSIBLE IN ALL CLIMATICE CONDITION FOR ALL TRUCK DIAGRAM MOVEMENT REFER TO TRAFFIC CONSULTANT REPORT -PATH SHOWN FOR CONTEXT
- BE ADVISED THAT SHOULD ANY PARTY INCLUDING THE OWNER OR ANY SUBSEQUENT OWNER , APPLY FOR MORE THAN ONE CONDOMINIUM CORPORATION ENCOMPASSING ANY OR ALL OF THIS DEVELOPMENT OR MAKE AN APPLICATION THAT RESULTS IN A LAND DIVISION, STAFF MAY REQUIRE LEGAL ASSURANCES, INCLUDING BUT NOT LIMITED TO EASEMENTS, WITH RESPECT TO THE APPROVED SERVICES. SUCH ASSURANCES WILL BE DETERMINED AT THE TIME OF APPLICATION FOR CONDOMINIUM APPROVAL • VENTILATION GRATING TO HAVE A POROSITY OF LESS THAN 20mm X 20mm OR 40mm X 10mm

TORONTO, ONTARIO _____ Project North True North

KEELE STREET

2634, 2636, 2640, 2642 &

2654 EGLINTON AVENUE WEST AND 1856 & 1856A

3 Oct.26.22 Coordintation

2 Oct.6.22 Coordination

1 Sep.29.22 Coordination

Rev. Date Issued

gh3*

416 915 1791

FORA

FORA

gh3* 55 OSSINGTON AVE, SUITE 100 Toronto, ON, Canada M6J 2Y9

SCALEAs indicatedPROJECT NO.202202ISSUE DATEDEC. 8, 2022

_____ **GROUND FLOOR** SITE PLAN

A1.00

5.1 CAR PARKING													
	Residential Car Parking Visitor Car Parking							Retail Car Parking			Total Car		
Level	Regular	Barrier-Free	Total	EVSE (100%)	Regular	Barrier-Free	Total	EVSE (25%)	Regular	Barrier-Free	Total	EVSE (25%)	Parking
P1	0	0	0	0	7	1	8	3	2	0	2	1	10
P2	27	1	28	28	0	0	0	0	0	0	0	0	28
P3	24	1	25	25	0	0	0	0	0	0	0	0	25
TOTAL	51	2	53	53	7	1	8	3	2	0	2	1	63

©		2 A5.04	A	(911	E		F A5.04		G		(H)
	PROPERTUNE 6123		61	23	 	6123		6123	 	6123	
		- - 								500x800mm STAIR	PRESSURIZATION S
۰. م ۷	EV	EV	EV	EV	EV	EV	EV	EV	EV	2400	
25	P324	P323	P322	P321	P320	P319 දූ	P318	P317	P316	00 14 m ² 14 m ² 149 ft ²	EXHAUST SH 16 m ² 177 ft ²
२	R	R	R	R	R	R	R	R	R	EXIT STAIR TO GROUND FLOOR	
 	PRESSURIZATION SHAFT				 	5% 000	DRIVE AISLE			C P315	EV
		E = E = E = E = E = E = E = E = E = E =			LOCKER ST(47 m ² 			6000		P313	
 			PAR 101	<u>(ING</u> 3 m ² 5700		5700		- WE AIGLE		P311	
	INTAKE SHAFT 16 m ² 177 ft ²		R 500 500 P304	R P305 EV	P306	P307 8	R 2600 TYP. 500 P308 LINE OF L1 A EV	R 300 BOVE P309 EV		KER STORAGE 28 m ² 305 ft ²	
C			A	2	E		E		G		0.4m

6m CORNER ROUNDING
 0.4m PROPERTY LINE EASEMENT

3 Oct.26.22 Coordintation 2Oct.6.22Coordination1Sep.29.22CoordinationRev.DateIssued

gh3* gh3* 55 OSSINGTON AVE, SUITE 100 Toronto, ON, Canada M6J 2Y9 416 915 1791

FØRA

FORA 2634, 2636, 2640, 2642 & 2654 EGLINTON AVENUE WEST AND 1856 & 1856A KEELE STREET

 SCALE
 1 : 100

 PROJECT NO.
 202202

 ISSUE DATE
 DEC. 8, 2022
 P3 FLOOR PLAN

A2.01

MATERIALS LEGEND C1 CONCRETE SP1 BRICK TEXTURED SOLID PANEL GL1 GLASS PANEL - NO FRIT GL2 GLASS PANEL - FRIT (ML1) ALUMINUM, SOFT WHITE TONE (ML2) ALUMINUM, LIGHT BRONZE

∕ TINT

Bird-Friendly Design Statistics

		Elev
	North	South
Glazing Area (m2)	321	329
Untreated Area (m2)	0	0
Treated Area (m2)	321	329
Visual Markers (m2)	251	260
Non-reflective glass (m2)	70	69
Shaded (m2)	0	0

Refer to the Toronto Green Standard Version 4 Ecology section for details on bird collision deterrence treatment options.

	6000	
 	 4000	Mech. PH
 	 3000	Level 33
 	 3000	LEVEL 32-33
 	 3000	Level 31
 	 3000	Level 30
	 3000	Level 29
	3300	Level 28
	 3000	Level 27
 	 3000	Level 26
 	 3000	Level 25
 	 3000	Level 24
 	 3000	Level 23
 	 3000	Level 22
 	 3000	Level 21
 	 3000	
 	 3000	
 	 3300	
 	 3000	Level 12
 	 0000	Level 11
 	 0 300	Level 10
 	 00 300	Level 9
 	 00 300	LEVEL 8-31
 	 00 7 30	LEVEL 7
 	 0 350	Level 6
 	 300	LEVEL 5-6
 	 4000	<u>_</u>
 	 3000	
	 3500	LEVEL 3
	8	LEVEL 2
	65	
	5000	LEVEL 1
 	 3000	P1
 	 3000	P2
 	 \rightarrow	P3

	(M Top	RONTO
ist	West	Total (m2)	Total (%)
219	48	917	100%
0	0	0	0%
219	48	917	
183	39	733	80%
.36	9	184	20%
0	0	0	0%

EC 4.3 GRATE POROSITY ENSURE GROUND LEVEL VENTILATION GRATES HAVE POROSITY OF LESS THAN 20mm x 20mm (OR 40mm x 10mm)

Copyright is that of the Architect. Any version of this drawing reproduced by any means from any media without prior written approval of the Architect is to be read for information only. The Architect is not liable for any loss or distortion of information resulting from subsequent reproduction of the original drawing. <u>GENERAL NOTES:</u> 1. Drawings are not to be scaled. Contractor will verify all existing conditions and dimensions required to perform the Work and will report any discrepancies with the Contract Descurate to the Architect before with the Contract Documents to the Architect before commencing work. 2. The Architectural Drawings are to be read in conjunction with all other Contract Documents including the Project Manuals and the Structural, Mechanical and Electrical Drawings. In cases of difference between the Consultants' documents with respect to the quantity, sizes or scope of work, the greater shall apply. 3. Positions of exposed or finished Mechanical or Electrical devices, fittings and fixtures are indicated on the Architectural Drawings. Locations shown on the Architectural Drawings shall govern over Mechanical and Electrical Drawings. Mechanical and Electrical items not clearly located will be located as directed by the Architect. 4. Dimensions indicated are taken between the faces of finished surfaces unless otherwise noted. 5. The architect has not been retained for supervision of construction and assumes no responsibility for means, methods and techniques of construction. 6. These documents are not to be used for construction unless specifically noted for such purpose.

	OPERTY LINE			
	Ϋ́Α	6000	×	Roof
		4000		Mech. PH
		000	×	Level 33
	ļ	000	<u> </u>	LEVEL 32-33
) —	3000	×	Level 31
		3000	<u> </u>	Level 30
		3000	<u> </u>	Level 29
		3300	<u> </u>	Level 28
		3000	<u> </u>	Level 27
		3000	<u> </u>	Level 26
	· · · · · · · · · · · · · · · · · · ·	3000	<u> </u>	Level 25
		3000	<u> </u>	Level 24
		3000	×	Level 23
		3000		Level 22
		3000	82600	Level 21
		3000	×	Level 20
		3000	×	Level 19
		3300	N	Level 18
		3000	106100	Level 17
		3000	×	Level 16
		3000	×	Level 15
		3000		Level 14
		3000	<u> </u>	Level 13
		3000	<u> </u>	Level 12
		3000	×	Level 11
8500		3000		Level 10
		3000		Level 9
5000	• • •	3000		LEVEL 8-31
		3500		LEVEL 7
		3000		Level 6
	OUTDOOR AMENITY W/	4000		LEVEL 5-6
	WIND SCREEN	000	53500	LEVEL 4 (AMENITY)
		00		LEVEL 3
		35		LEVEL 2
	ARCHITECTURAL	6500		
	<u>[</u>			LEVEL 1
		5000		
		3000	11000	P1
			<u> </u>	P2

P3

gh3* gh3* 55 OSSINGTON AVE, SUITE 100 Toronto, ON, Canada M6J 2Y9 416 915 1791

Rev. Date Issued

FORA

FORA 2634, 2636, 2640, 2642 & 2654 EGLINTON AVENUE WEST AND 1856 & 1856A **KEELE STREET**

SCALEAs indicatedPROJECT NO.202202ISSUE DATEDEC. 8, 2022

BUILDING **ELEVATIONS**

A5.01

								Roof
							k -+	Mech. PH
		RES. SUITE		RES. SUITE			x	Level 33
		RES. SUITE		RES. SUITE				LEVEL 32-33
_		RES. SUITE		RES. SUITE			X	Level 31
		RES. SUITE		RES. SUITE			×	Level 30
		RES. SUITE		RES. SUITE		300 300 0		Level 29
		RES. SUITE		RES. SUITE			×	Level 28
		RES. SUITE		RES. SUITE		33 	x	Level 27
		RES. SUITE		RES. SUITE			×	Level 26
		RES. SUITE		RES. SUITE			×	Level 25
		RES. SUITE		RES. SUITE				Level 24
		RES. SUITE		RES. SUITE			x	Level 23
		RES. SUITE		RES. SUITE		30 		Level 22
		RES. SUITE		RES. SUITE		30 	x	Level 21
		RES. SUITE		RES. SUITE			Ł	Level 20
		RES. SUITE		RES. SUITE			×	Level 19
		KES. SUITE		RES. SUITE			x	Level 18
		RES. SUITE		RES. SUITE			06100	Level 17
		RES. SUITE		RES. SUITE		3000	<u>_</u>	Level 16
		RES. SUITE		RES. SUITE			X	Level 15
		RES. SUITE		RES. SUITE			Ł	Level 14
		RES. SUITE		RES. SUITE			X	Level 13
		RES. SUITE		RES. SUITE		30 30 0	X	Level 12
		RES. SUITE		RES. SUITE				Level 11
		RES. SUITE		RES. SUITE		30 	x	Level 10
		RES. SUITE		RES. SUITE		300 300 0	x	Level 9
		RES. SUITE		RES. SUITE		30 	×	LEVEL 8-31
_		RES. SUITE		RES. SUITE			x	LEVEL 7
_		RES. SUITE		RES. SUITE				Level 6
		RES. SUITE	┥┥	RES. SUITE			x	LEVEL 5-6
	[AMENITY +++ +++ +++ ++++ ++++++++++++++++++++		AMENITY		400		
		RES. SUITE		RES. SUITE		3000		LEVEL 4 (AMENITY)
		RES. SUITE		RES. SUITE		3500		LEVEL 3
		1000mm MECH.						LEVEL 2
		5300 177-4 1/2"	6120	C.1m V	YPE G LOADING ERTICAL CLEARANCE MAX. 2%	650 650		
	Imm TRNSFR SLAB					2000		LEVEL 1
		PARKING	5% TYP.				11000	P1
		PARKING	5% TYP.			3000		P2
		PARKING	5% TYP.			300 	$\left \right $	P3
L	· · · · · · · · · · · · · · · · · · ·							

3 N-S BUILDING SECTION 'B' A5.04 1:200

.K		
STAIR	RES. SUITE	·
	RES. SUITE	
	RES. SUITE	
	RES. SUITE	
	RES. SUITE	
	RES. SUITE	
	RES SUITE	
	RES. SUITE	
	RES. SUITE	
	RES. SUITE	n
	RES. SUITE	
	RES. SUITE	L
	RES. SUITE	
	RES. SUITE	•
	RES. SUITE	
	RES. SUITE	L
	RES. SUITE	
	RES. SUITE	
	RES. SUITE	
	RES. SUITE	l
	RES. SUITE	
	+ + + + + + + + + + + + + + + + + + +	Π
	RES. SUITE	
	RES. SUITE	
LOA & W	ADING VASTE	
2		
	•	

RES. SUITE

RES. SUITE

RES. SUITE

RES. SUITE

RES. SUITE

2 N-S BUILDING SECTION 'A' A5.04 1:200

4 E-W BUILDING SECTION 'C'

PROPERTY LINE					Ĩ		Roof
					600 -11 1/2"	00009	
*						-	Mech. PH
	RES. SUITE	ŠTAIR 'B'		ELEVATOR CORE	RES. SUITE		Level 33
	RES. SUITE				RES. SUITE		LEVEL 32-33
	RES. SUITE				RES. SUITE	3000	Level 31
	RES. SUITE				RES. SUITE	3000	Level 30
	RES. SUITE					3000	Level 29
						3300	Level 28
	RES. SUITE					3000	Level 27
	RES. SUITE				RES. SUITE		Level 26
	RES. SUITE				RES. SUITE	30000	Level 25
	RES. SUITE				RES. SUITE	3000	Level 24
	RES. SUITE				RES. SUITE	3000	Level 23
200	RES. SUITE				RES. SUITE	3000	Level 21
826	RES. SUITE				RES. SUITE	3000	Level 20
	RES. SUITE				RES. SUITE		Level 19
					RES. SUITE 🛱 📮		112100 Level 18
	RES. SUITE				RES. SUITE	000 33 106100 33	Level 17
	RES. SUITE						Level 16
	RES. SUITE		1 [1		RES. SUITE	3000	Level 15
	RES. SUITE				RES. SUITE	3000	Level 14
							Level 13
	RES. SUITE					3000	Level 12
	RES. SUITE				RES. SUITE		Level 11
	RES. SUITE				RES. SUITE	3000	Level 10
	RES. SUITE				RES. SUITE	3000	Level 9
*	AMENITY				RES. SUITE	3000	LEVEL 8-31
	RES. SUITE				450mm MECH.	3200	LEVEL 7
	RES. SUITE				RES. SUITE 0001	3000	Level 6
					1000mm MECH	4000	LEVEL 5-6
23500	RES. SUITE						/EL 4 (AMENITY)
	RES. SUITE				500mm MECH		LEVEL 3
					1000mm TRNSFR SLAB		LEVEL 2
	2330 2330 2330	LOADING		ELEVATOR CORE	STAIR 'A' RAMP 2300		
	1500mm TRNSFR SLAB						LEVEL 1
						2 11000 11000	P1
	PARKING BICYCLE STORAGE						P2
	PARKING						P3
	- · · · · · · · · · · · · · · · · · · ·						

gh3* gh3* 55 OSSINGTON AVE, SUITE 100 Toronto, ON, Canada M6J 2Y9 416 915 1791

Rev. Date Issued

FØRA

FORA 2634, 2636, 2640, 2642 & 2654 EGLINTON AVENUE WEST AND 1856 & 1856A **KEELE STREET**

 SCALE
 1 : 200

 PROJECT NO.
 202202

 ISSUE DATE
 DEC. 8, 2022

BUILDING SECTIONS

A5.04

Appendix B

Borehole Logs and Well Installation Details

CLIENT: FORA DEVELOPMENTS PROJECT NO.: CT3639.00 RECORD OF:)F:						
ADDRESS: 1856-1856A Keele Street and 263	6 - 26	54 Egli	inton	Avenu	ue Wes	st								MW	/10		
CITY/PROVINCE: TORONTO, ONTARIO		NO	RTH	ING (m	: 4838	8649		E	EAST	ING	(m):	62295	58	ELEV.	(m) 12	29.59	
CONTRACTOR: PONTIL DRILLING INC.				METH	HOD: H	lollow	Ster	n Au	ger a	and S	Split	Spoor	n Sampl	ing			
BOREHOLE DIAMETER (cm): 20 WELL DIAM	<i>I</i> ETER	t (cm):	5	SCRE	EEN SLO	OT #:	10 s	AND T	YPE:	2			SEA		YPE:	BENTONITE	E
SAMPLE TYPE _ AUGER _ DRIVE	EN			ORING	ENGTH		DYNA	MIC (=		SHELB	Y	⊥ SPLI T	T SPO	NC	
ิ ธุกม	e	E) Z		(kPa)	•	(CONTE (%)	ENT	c	J. H	۲Y (%	-EL)	ORY	LION			
	E E	ATIC	40	N-VALI	JE	-			ц Ц		DVEF	oV or %	ING			REMARKS	
	DEP.		(E 20	3lows/30) 40 6	0 80	PL 20	- W.C 40 6	50 80	CAM	SAM	REC	CV/T (ppm	LABC	WEL			
ASPHALT	0	129.5 -							1	АШ	50	<5/0.0					_
brown, moist	-		5 ▲ 5						1	в	50	<5/0					
	-0.5	129-	Ĩ									10,0					
	-												M&I,				
	-	128.5 -	▲ 5						2	2	100	<5/0	BTEX,				
	- - - 1 E	-											F1-F4				
	- 1.5	128-		0					3	A	50	<5/0					
SILTY SAND	- - - 2			0					3	в	50	<5/0					
trace gravel	-	127.5 -															
moist to saturated	-25																
		127 -	8						4	1	100	<5/0					
	-3																
	-	126.5 -															
	- 3.5	-	1	3					5	5	100	<5/0	M&I				
	-	126 -	N														
saturated, coal fragment	- 4	-															
	-	125.5 -	26	▶					6	5	42	<5/0	PAHs				
	- 4.5	-	1														
	-	125-											BTEX,	l:≣∷			
	- 5	124 5	8						7		79	<5/0	F1-F4, VOCs				
	-	124.5															
 arev	- 5.5	124										_ /-					
3.57	-	124	1	0					8	3	83	<5/0					
	-6	123 5 -															
	-								9/	A							
trace gravel	- 6.5	123 -	6						9	в	100	<5/0					
grey, wet	-																
	-7	122.5 -										= /0					
	-		8						1	0	100	<5/0					
	- - 7.5	122 -															
	-											= 10					
	-8	121.5 -	▲ 7						1	1	17	<5/0					
END OF BOREHOLE		· ·	\vdash					\square	\top								
										╋					· 22		
TERRAPEX				INPI		 	L		+				-4-001 F· 28-N	-22 10\/-2	022	_	
TERRAPEX					REVI	EWED) BY:	MD		+	PAG	E 1 OF	1	201		~ _	

CLIENT: FORA DEVELOPMENTS PROJECT NO.: CT3639.00 RECOR											RD C	DF:							
ADDR	ESS: 1856-1856A Keele Street and 263	6 - 265	54 Egli	nton /	Avenu	e Wes	st									MN	<u>/20'</u>	1	
CITY/F	PROVINCE: TORONTO, ONTARIO		NO	RTHIN	NG (m):				1	EAS	TINC	G (n	n):			ELEV.	. (m)		
CONT	RACTOR: SONIC SOIL LTD.				METH	OD: P	NOI	JAR											
BORE	HOLE DIAMETER (cm): 20 WELL DIA	METER	(cm):	5	SCRE	EN SLO	OT #:	10	SAND	TYPE	: 2	-	_		SEA		TYPE:	BENTON	IITE
SAMP	LE TYPE AUGER DRIV	EN			ORING	NGTH		DYN	AMIC ER	CON	IE	_	s	HELB	Y _	SPLI	T SPO	ON	
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (Blo	(kPa) 80 120 N-VALU ows/300	0 160 E mm)▲ 80	F 20	CONT (% PL W. 40	ENT)) C. LL 60 80	0	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION		REMARKS	
	CONCRETE CLAYEY SILTY SAND (FILL) some gravel, asphalt dark brown, moist CLAYEY SILT some sand, trace gravel, cobble grey, moist FINE SAND trace gravel, oxidation light brown, moist SILTY SAND trace clay dark grey, moist SILTY CLAY trace sand dark grey, moist 	- 0 - 0.5 - 1.5 - 1.5 - 2.5 - 3.5 - 3.5 - 4.5 - 4.5 - 4.5 - 5 -		20	40 60	80	20	40	60 80		00 0 1 2 3 4A 4B 5 6 7		 <u>∞</u> 60 40 80 00 00 00 00 00 	<u>○</u> <u>=</u> <5/0 <5/0 <5/0 <5/0 <5/0 <5/0	≤F M&I, PAHs, VOCs, F1-F4 M&I, PAHs, UPLICAT				
		- 5.5 									8	1	00	<5/0					
	TEADADEV				ŀ	LOG	GED	BY:	ΓL			D	RIL	LING	DATE: 1	7-NO\ -	/-2022		
	TERRAPEX				⊢	INPU	IT BY	: JS			\dashv	N	10N	ITORI	NG DATI	=:			
1						REVI	IEWE	D BY:	MD			Ρ	AGE	= 1 OF	1				

CLIENT: FORA DEVELOPMENTS PR									⁻ NO	.: CT	363	9.0	0			RECORD OF: MW202				
ADDR	ESS: 1856-1856A Keele Street and 263	6 - 26	54 Egli	nton	Aven	ue W	est										<u>MN</u>	<u>V20</u> 2	2	
CITY/I	PROVINCE: TORONTO, ONTARIO		NO	RTH	ING (m	ı):					EAS	TIN	G (I	m):			ELEV	. (m)		
CONT	RACTOR: SONIC SOIL INC				MET	HOD:	PI	ONJ	AR											
BORE	HOLE DIAMETER (cm): 20 WELL DIAI	METER	(cm):	5	SCR	EEN S	SLO	T #:	10	SAND	TYPE	: 2				SEA		TYPE:	BENTONI	TE
SAMP	LE TYPE AUGER DRIV	EN					н	[CON	NE		3	SHELB	Y	SPL	IT SPO	ON	
GWL (m) GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (E 20	(kPa) 80 1 N-VAL 3lows/30	20 160 UE 00mm) 60 80))	(PL 20	CONT (% . W. 40	C. LL		SAMPLE NO.	SAMPLE TYPE	RECOVERY (%	CV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION		REMARKS	
	CONCRETE CLAYEY SILTY SAND (FILL) some gravel light brown, dry SILTY SAND (FILL) light brown, moist	- 0.5										1 2		50 100	<5/0	M&I, PAHs, F1-F4, VOCs				
	CLAYEY SILT some sand, oxidation dark brown, moist to wet	- 1.5 - - - 2										3		100	<5/0					
	trace fine gravel dark grey, moist to wet	- 2.5										4		100	<5/0	M&I, PAHs		-		
		- 3 - - - 3.5										5		100	20/1					
		- 4										6		100	85/6 D	F1-F4, VOCs, UPLICA ⁻				
		- 4.5 - - - - - - - - - - - -										7		100	70/1					
		- 5.5										8		100	25/1					
	END OF BOREHOLE	.0		\vdash		+				+	$\left \right $									
					LO	GG	ED B	3Y: -	ΓL				DRIL	LING I	DATE: 1	7-NO\	/-2022			
	TERRAPEX			INF	PUT	BY:	JS				Ν	NON	<u>IITO</u> RI	NG DAT	E: <u>2</u> 8-I	NOV-2	022			
	TERRAPEA			RE	VIE	WED	BY	MD)		F	PAG	E 1 OF	1						

Appendix C

ORMGP Cross Section

Cross Section

Appendix D

Hydraulic Conductivity Analysis

Appendix E

Water Quality Analysis

Your Project #: 22-1464 Site Location: 2636-2654 EGLINTON AVE W Your C.O.C. #: 907396-01-01

Attention: Mike Francis

Groundwater Environmental Management Services Inc. 150 Rivermede Rd Unit # 9 Concord, ON CANADA L4K 3M8

> Report Date: 2022/12/05 Report #: R7417288 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2Y8836

Received: 2022/11/28, 15:40

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Sewer Use By-Law Semivolatile Organics	1	2022/12/02	2022/12/03	CAM SOP 00301	EPA 8270 m
Biochemical Oxygen Demand (BOD)	1	2022/11/30	2022/12/05	CAM SOP-00427	SM 23 5210B m
Chromium (VI) in Water	1	N/A	2022/11/30	CAM SOP-00436	EPA 7199 m
Total Cyanide	1	2022/11/29	2022/11/29	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2022/11/29	2022/11/30	CAM SOP-00449	SM 23 4500-F C m
Mercury in Water by CVAA	1	2022/11/30	2022/11/30	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	N/A	2022/12/01	CAM SOP-00447	EPA 6020B m
E.coli, (CFU/100mL)	1	N/A	2022/11/28	CAM SOP-00552	
Total Nonylphenol in Liquids by HPLC	1	2022/11/30	2022/12/02	CAM SOP-00313	In-house Method
Nonylphenol Ethoxylates in Liquids: HPLC	1	2022/11/30	2022/12/02	CAM SOP-00313	In-house Method
Animal and Vegetable Oil and Grease	1	N/A	2022/12/02	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2022/12/02	2022/12/02	CAM SOP-00326	EPA1664B m,SM5520B m
Polychlorinated Biphenyl in Water	1	2022/11/30	2022/12/01	CAM SOP-00309	EPA 8082A m
рН	1	2022/11/29	2022/11/30	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2022/11/30	CAM SOP-00444	OMOE E3179 m
Total Kjeldahl Nitrogen in Water	1	2022/11/29	2022/11/30	CAM SOP-00938	OMOE E3516 m
Total PAHs (1)	1	N/A	2022/12/05	CAM SOP - 00301	
Mineral/Synthetic O & G (TPH Heavy Oil) (2)	1	2022/12/02	2022/12/02	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2022/11/30	2022/12/01	CAM SOP-00428	SM 23 2540D m
Volatile Organic Compounds in Water	1	N/A	2022/11/30	CAM SOP-00228	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Page 1 of 19

Your Project #: 22-1464 Site Location: 2636-2654 EGLINTON AVE W Your C.O.C. #: 907396-01-01

Attention: Mike Francis

Groundwater Environmental Management Services Inc. 150 Rivermede Rd Unit # 9 Concord, ON CANADA L4K 3M8

> Report Date: 2022/12/05 Report #: R7417288 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2Y8836

Received: 2022/11/28, 15:40

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Total PAHs include only those PAHs specified in the sewer use by-by-law.

(2) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Jolanta Goralczyk, Project Manager Email: Jolanta.Goralczyk@bureauveritas.com Phone# (905)817-5751

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 19

TORONTO SANITARY&STORM SEWER (100-2016)

Bureau Veritas ID				UKU597					
Complian Data		1		2022/11/28					
				11:00					
COC Number				907396-01-01					
	UNITS	Criteria	Criteria-2	MW101	RDL	QC Batch			
Calculated Parameters									
Total Animal/Vegetable Oil and Grease	mg/L		150	0.70	0.50	8371011			
Inorganics									
Total BOD	mg/L	15	300	ND	2	8375459			
Fluoride (F-)	mg/L	-	10	0.12	0.10	8373964			
Total Kjeldahl Nitrogen (TKN)	mg/L	-	100	0.30	0.30 0.10				
рН	рН	6.0:9.5	6.0:11.5	7.68		8373966			
Phenols-4AAP	mg/L	0.008	1.0	0.0010	8374534				
Total Suspended Solids	mg/L	15	350	85	10	8375381			
Total Cyanide (CN)	mg/L	0.02	2	ND	0.0050	8373064			
Petroleum Hydrocarbons									
Total Oil & Grease	mg/L	-	-	1.2	0.50	8381722			
Total Oil & Grease Mineral/Synthetic	mg/L	-	15	0.50	0.50	8381727			
Miscellaneous Parameters									
Nonylphenol Ethoxylate (Total)	mg/L	0.01	0.2	ND	0.005	8376857			
Nonylphenol (Total)	mg/L	0.001	0.02	ND	0.001	8376848			
Metals									
Chromium (VI)	ug/L	40	2000	0.54	0.50	8373967			
Mercury (Hg)	mg/L	0.0004	0.01	ND	0.00010	8375550			
Total Aluminum (Al)	ug/L	-	50000	1600	4.9	8377550			
Total Antimony (Sb)	ug/L	-	5000	ND	0.50	8377550			
Total Arsenic (As)	ug/L	20	1000	ND	1.0	8377550			
Total Cadmium (Cd)	ug/L	8	700	ND	0.090	8377550			
Total Chromium (Cr)	ug/L	80	4000	ND	5.0	8377550			
Total Cobalt (Co)	ug/L	-	5000	0.99	0.50	8377550			
Total Copper (Cu)	ug/L	40	2000	3.9	0.90	8377550			
Total Lead (Pb)	ug/L	120	1000	1.7	0.50	8377550			
Total Manganese (Mn)	ug/L	50	5000	46	2.0	8377550			
No Fill No Exceedance									
Grey Exceeds 1 criteria po	olicy/level								
Black Exceeds both criteria	a/levels								
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

Criteria: Toronto Storm Sewer Discharge Use By-Law

Criteria-2: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the Chapter 681.

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Page 3 of 19

TORONTO SANITARY&STORM SEWER (100-2016)

Bureau Veritas ID					UKU597				
Sampling Date			Τ		2022/11/28				
Sampling Pare					11:00	ļ			
COC Number					907396-01-01	<u> </u>			
		UNITS	Criteria	Criteria-2	MW101	RDL	QC Batch		
Total Molybdenun	n (Mo)	ug/L	-	5000	0.97	0.50	8377550		
Total Nickel (Ni)		ug/L	80	2000	3.0	1.0	8377550		
Total Phosphorus	(P)	ug/L	400	400 10000 110		100	8377550		
Total Selenium (Se	٤)	ug/L	20	1000	ND	2.0	8377550		
Total Silver (Ag)	otal Silver (Ag)		120	5000	ND	0.090	8377550		
Total Tin (Sn)	iotal Tin (Sn)		-	5000	2.0	1.0	8377550		
Total Titanium (Ti)	otal Titanium (Ti)			5000	45	5.0	8377550		
otal Zinc (Zn)		ug/L	40	2000	10	5.0	8377550		
Semivolatile Orga	nics								
Di-N-butyl phthalate		ug/L	15	80	ND	8	8380818		
Bis(2-ethylhexyl)phthalate		ug/L	8.8	12	ND	8	8380818		
3,3'-Dichlorobenzidine		ug/L	0.8	2	ND	0.8	8380818		
Pentachlorophenol		ug/L	2	5	ND	2	8380818		
Phenanthrene		ug/L			ND	0.8	8380818		
Anthracene		ug/L	-	-	ND	0.8	8380818		
Fluoranthene		ug/L	-	-	ND	0.8	8380818		
Pyrene		ug/L	-	-	ND	0.8	8380818		
Benzo(a)anthracer	ne	ug/L	-	-	ND	0.8	8380818		
Chrysene		ug/L		-	ND	0.8	8380818		
Benzo(b/j)fluorant	thene	ug/L			ND	0.8	8380818		
Benzo(k)fluoranth	ene	ug/L	-	-	ND	0.8	8380818		
Benzo(a)pyrene		ug/L	-	-	ND	0.8	8380818		
Indeno(1,2,3-cd)p	yrene	ug/L		-	ND	0.8	8380818		
Dibenzo(a,h)anthr	acene	ug/L	-	-	ND	0.8	8380818		
Benzo(g,h,i)peryle	ne	ug/L	-	-	ND	0.8	8380818		
Dibenzo(a,i)pyren	e	ug/L	ig/L ND		ND	0.8	8380818		
Benzo(e)pyrene		ug/L	-	-	ND	0.8	8380818		
Perylene	ug/L		-	ND	0.8	8380818			
No Fill	No Exceedance	·		•		,	·		
Grey	Exceeds 1 criteria po	Exceeds 1 criteria policy/level							
Black	Exceeds both criteri	a/levels							

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Toronto Storm Sewer Discharge Use By-Law

Criteria-2: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the Chapter 681.

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Page 4 of 19

TORONTO SANITARY&STORM SEWER (100-2016)

Bureau Veritas ID				UKU597							
Sampling Date				2022/11/28							
				11:00							
COC Number				907396-01-01	ļ						
	UNITS	Criteria	Criteria-2	MW101	RDL	QC Batch					
Dibenzo(a,j) acridine	ug/L	-	-	ND	2	8380818					
7H-Dibenzo(c,g) Carbazole	ug/L	-	-	ND	2	8380818					
1,6-Dinitropyrene	ug/L	-	-	ND	2	8380818					
1,3-Dinitropyrene	ug/L	-	-	ND	2	8380818					
1,8-Dinitropyrene	ug/L	-	-	ND	2	8380818					
Calculated Parameters											
Total PAHs (18 PAHs)	ug/L	2	5	ND (1)	5	8371129					
Volatile Organics											
Benzene	ug/L	2	10	ND	0.40	8373368					
Chloroform	ug/L	2	40	ND	0.40	8373368					
1,2-Dichlorobenzene	ug/L	5.6	50	ND	0.80	8373368					
1,4-Dichlorobenzene	ug/L	6.8	80	ND	0.80	8373368					
cis-1,2-Dichloroethylene	ug/L	5.6	4000	ND	1.0	8373368					
trans-1,3-Dichloropropene	ug/L	5.6	140	ND	0.80	8373368					
Ethylbenzene	ug/L	2	160	ND	0.40	8373368					
Methylene Chloride(Dichloromethane)	ug/L	5.2	2000	ND	4.0	8373368					
1,1,2,2-Tetrachloroethane	ug/L	17	1400	ND	0.80	8373368					
Tetrachloroethylene	ug/L	4.4	1000	ND	0.40	8373368					
Toluene	ug/L	2	16	ND	0.40	8373368					
Trichloroethylene	ug/L	7.6	400	ND	0.40	8373368					
p+m-Xylene	ug/L	-	-	ND	0.40	8373368					
o-Xylene	ug/L	-	-	ND	0.40	8373368					
Total Xylenes	ug/L	4.4	1400	ND	0.40	8373368					
PCBs											
Total PCB	ug/L	0.4	1	ND	0.05	8377150					
Microbiological											
Escherichia coli	CFU/100mL	200	-	<10	10	8372269					
No Fill No Exceedance											
Grey Exceeds 1 criteria po	olicy/level										
Black Exceeds both criteria/levels											
RDL = Reportable Detection Limit											
QC Batch = Quality Control Batch											
Criteria: Toronto Storm Sewer Discharge	Use By-Law										
Criteria-2: Toronto Sanitary and Combine	ed Sewers Dis	charge G	uidelines. F	Referenced to th	ie Chapte	r 681.					
ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.											

RDL exceeds criteria

Page 5 of 19

Bureau Veritas	ID				UKU597		
Sampling Date					2022/11/28 11:00		
COC Number					907396-01-01		
		UNITS	Criteria	Criteria-2	MW101	RDL	QC Batch
Surrogate Recov	very (%)				•		
2,4,6-Tribromop	henol	%	-	-	37		8380818
2-Fluorobipheny	/	%	-	-	63		8380818
D14-Terphenyl (FS)	%	-	-	93		8380818
D5-Nitrobenzen	e	%	-	-	77		8380818
D8-Acenaphthyl	%	-	-	73		8380818	
Decachlorobiph	enyl	%	-	-	70		8377150
4-Bromofluorob	enzene	%	-	-	94		8373368
D4-1,2-Dichloro	ethane	%	-	-	117		8373368
D8-Toluene		%	-	-	95		8373368
No Fill	No Exceedance						
Grey	Exceeds 1 criteria po	olicy/level					
Black	Exceeds both criteri	a/levels					
RDL = Reportabl	e Detection Limit						
QC Batch = Qua	ity Control Batch						
Criteria: Toronto	Storm Sewer Discharge	Use By-Law					
Criteria-2: Toror	nto Sanitary and Combine	ed Sewers Di	scharge G	uidelines. I	Referenced to th	ne Chapte	r 681.

TORONTO SANITARY&STORM SEWER (100-2016)

Total Suspended Solids

Volatile Organic Compounds in Water

Groundwater Environmental Management Services Inc. Client Project #: 22-1464 Site Location: 2636-2654 EGLINTON AVE W Sampler Initials: LM

Collected: 2022/11/28

Masood Siddiqui Narayan Ghimire

TEST SUMMARY

Bureau Veritas ID:	UKU597
Sample ID:	MW101
Matrix:	Water

Sample ID: MW101 Matrix: Water					Shipped: Received: 2022/11/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sewer Use By-Law Semivolatile Organics	GC/MS	8380818	2022/12/02	2022/12/03	Adriana Zurita
Biochemical Oxygen Demand (BOD)	DO	8375459	2022/11/30	2022/12/05	Nusrat Naz
Chromium (VI) in Water	IC	8373967	N/A	2022/11/30	Theodora Luck
Total Cyanide	SKAL/CN	8373064	2022/11/29	2022/11/29	Prgya Panchal
Fluoride	ISE	8373964	2022/11/29	2022/11/30	Kien Tran
Mercury in Water by CVAA	CV/AA	8375550	2022/11/30	2022/11/30	Japneet Gill
Total Metals Analysis by ICPMS	ICP/MS	8377550	N/A	2022/12/01	Rupinder Gill
E.coli, (CFU/100mL)	PL	8372269	N/A	2022/11/28	Sonja Elavinamannil
Total Nonylphenol in Liquids by HPLC	LC/FLU	8376848	2022/11/30	2022/12/02	Dennis Boodram
Nonylphenol Ethoxylates in Liquids: HPLC	LC/FLU	8376857	2022/11/30	2022/12/02	Dennis Boodram
Animal and Vegetable Oil and Grease	BAL	8371011	N/A	2022/12/02	Automated Statchk
Total Oil and Grease	BAL	8381722	2022/12/02	2022/12/02	Navneet Singh
Polychlorinated Biphenyl in Water	GC/ECD	8377150	2022/11/30	2022/12/01	Svitlana Shaula
рН	AT	8373966	2022/11/29	2022/11/30	Kien Tran
Phenols (4AAP)	TECH/PHEN	8374534	N/A	2022/11/30	Mandeep Kaur
Total Kjeldahl Nitrogen in Water	SKAL	8373578	2022/11/29	2022/11/30	Rajni Tyagi
Total PAHs	CALC	8371129	N/A	2022/12/05	Automated Statchk
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8381727	2022/12/02	2022/12/02	Navneet Singh

2022/11/30

N/A

2022/12/01

2022/11/30

8375381

8373368

BAL

GC/MS

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Page 7 of 19

GENERAL COMMENTS

Each te	Each temperature is the average of up to three cooler temperatures taken at receipt									
]	Package 1	8.0°C								
Sample	Sample UKU597 [MW101] : VOC Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.									
ABN Ar	alysis: Due to the	sample matrix, a	smaller amount was used for extraction. Detection limits were adjusted accordingly.							
Results	Results relate only to the items tested.									

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8373064	GYA	Matrix Spike	Total Cyanide (CN)	2022/11/29		100	%	80 - 120
8373064	GYA	Spiked Blank	Total Cyanide (CN)	2022/11/29		97	%	80 - 120
8373064	GYA	Method Blank	Total Cyanide (CN)	2022/11/29	ND,		mg/L	
					RDL=0.0050			
8373064	GYA	RPD	Total Cyanide (CN)	2022/11/29	NC		%	20
8373368	NGH	Matrix Spike	4-Bromofluorobenzene	2022/11/30		94	%	70 - 130
			D4-1,2-Dichloroethane	2022/11/30		120	%	70 - 130
			D8-Toluene	2022/11/30		99	%	70 - 130
			Benzene	2022/11/30		92	%	70 - 130
			Chloroform	2022/11/30		99	%	70 - 130
			1,2-Dichlorobenzene	2022/11/30		95	%	70 - 130
			1,4-Dichlorobenzene	2022/11/30		107	%	70 - 130
			cis-1,2-Dichloroethylene	2022/11/30		NC	%	70 - 130
			trans-1,3-Dichloropropene	2022/11/30		116	%	70 - 130
			Ethylbenzene	2022/11/30		87	%	70 - 130
			Methylene Chloride(Dichloromethane)	2022/11/30		103	%	70 - 130
			1,1,2,2-Tetrachloroethane	2022/11/30		103	%	70 - 130
			Tetrachloroethylene	2022/11/30		82	%	70 - 130
			Toluene	2022/11/30		88	%	70 - 130
			Trichloroethylene	2022/11/30		NC	%	70 - 130
			p+m-Xylene	2022/11/30		88	%	70 - 130
			o-Xylene	2022/11/30		88	%	70 - 130
8373368	NGH	Spiked Blank	4-Bromofluorobenzene	2022/11/30		93	%	70 - 130
			D4-1,2-Dichloroethane	2022/11/30		110	%	70 - 130
			D8-Toluene	2022/11/30		103	%	70 - 130
			Benzene	2022/11/30		90	%	70 - 130
			Chloroform	2022/11/30		95	%	70 - 130
			1,2-Dichlorobenzene	2022/11/30		94	%	70 - 130
			1,4-Dichlorobenzene	2022/11/30		107	%	70 - 130
			cis-1,2-Dichloroethylene	2022/11/30		99	%	70 - 130
			trans-1,3-Dichloropropene	2022/11/30		98	%	70 - 130
			Ethylbenzene	2022/11/30		89	%	70 - 130
			Methylene Chloride(Dichloromethane)	2022/11/30		98	%	70 - 130
			1,1,2,2-Tetrachloroethane	2022/11/30		93	%	70 - 130
			Tetrachloroethylene	2022/11/30		85	%	70 - 130
			Toluene	2022/11/30		90	%	70 - 130
			Trichloroethylene	2022/11/30		92	%	70 - 130
			p+m-Xylene	2022/11/30		91	%	70 - 130
			o-Xylene	2022/11/30		90	%	70 - 130
8373368	NGH	Method Blank	4-Bromofluorobenzene	2022/11/30		93	%	70 - 130
			D4-1,2-Dichloroethane	2022/11/30		111	%	70 - 130
			D8-Toluene	2022/11/30		102	%	70 - 130
			Benzene	2022/11/30	ND, RDL=0.20		ug/L	
			Chloroform	2022/11/30	ND, RDL=0.20		ug/L	
			1,2-Dichlorobenzene	2022/11/30	ND, RDL=0.40		ug/L	
			1,4-Dichlorobenzene	2022/11/30	ND, RDL=0.40		ug/L	

Page 9 of 19

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	OC Type	Parameter	Date Analyzed	Value	Recoverv	UNITS	OC Limits
			cis-1.2-Dichloroethylene	2022/11/30	ND.		ug/L	
				,,,	RDL=0.50			
			trans-1,3-Dichloropropene	2022/11/30	ND,		ug/L	
					RDL=0.40		0,	
			Ethylbenzene	2022/11/30	ND,		ug/L	
					RDL=0.20		-	
			Methylene Chloride(Dichloromethane)	2022/11/30	ND,		ug/L	
					RDL=2.0			
			1,1,2,2-Tetrachloroethane	2022/11/30	ND,		ug/L	
					RDL=0.40			
			Tetrachloroethylene	2022/11/30	ND,		ug/L	
					RDL=0.20			
			Toluene	2022/11/30	ND,		ug/L	
					RDL=0.20			
			Trichloroethylene	2022/11/30	ND,		ug/L	
					RDL=0.20			
			p+m-Xylene	2022/11/30	ND,		ug/L	
					RDL=0.20			
			o-Xylene	2022/11/30	ND,		ug/L	
			Tetel Malance	2022/11/20	RDL=0.20			
			Total Xylenes	2022/11/30	ND, PD -0.20		ug/L	
0272260	NCU		Benzone	2022/11/20	NDL=0.20		0/	20
03/3300	NGH	RF D	Chloroform	2022/11/30	NC		/0	20
			1.2 Dichlershanzona	2022/11/30	NC		70 0/	30 20
			1,2-Dichlorobenzene	2022/11/30	NC		/0 0/	30
			sic 1.2 Dichlereethylene	2022/11/30	NC 4 E		/0	20
			trans 1.2 Dichloropropopo	2022/11/30	4.5 NC		/0	20
			Ethylbonzono	2022/11/30	NC		/0	20
			Methylene Chloride(Dichloromethane)	2022/11/30	NC		/0 0/	30
			1 1 2 2-Tetrachloroethane	2022/11/30	NC		%	30
			Tetrachloroethylene	2022/11/30	NC		%	30
			Toluene	2022/11/30	NC		%	30
			Trichloroethylene	2022/11/30	5.6		%	30
			n+m-Xylene	2022/11/30	NC		%	30
			o-Xvlene	2022/11/30	NC		%	30
			Total Xylenes	2022/11/30	NC		%	30
8373578	RTY	Matrix Spike	Total Kieldahl Nitrogen (TKN)	2022/11/30		104	%	80 - 120
8373578	RTY	OC Standard	Total Kieldahl Nitrogen (TKN)	2022/11/30		104	%	80 - 120
8373578	RTY	Spiked Blank	Total Kieldahl Nitrogen (TKN)	2022/11/30		103	%	80 - 120
8373578	RTY	Method Blank	Total Kieldahl Nitrogen (TKN)	2022/11/30	ND.	200	mg/l	00 120
03/33/0		Method Blank		2022, 11, 50	RDL=0.10			
8373578	RTY	RPD	Total Kieldahl Nitrogen (TKN)	2022/11/30	4.1		%	20
8373964	КІТ	Matrix Spike	Fluoride (F-)	2022/11/30		103	%	80 - 120
8373964	КІТ	Spiked Blank	Fluoride (F-)	2022/11/30		101	%	80 - 120
8373964	КІТ	Method Blank	Fluoride (F-)	2022/11/30	ND.		mg/L	
		-	. ,	, ,	RDL=0.10		0,	
8373964	КІТ	RPD	Fluoride (F-)	2022/11/30	2.4		%	20
8373966	КІТ	Spiked Blank	рH	2022/11/30		102	%	98 - 103
8373966	КІТ	RPD	pH	2022/11/30	0.11		%	N/A
8373967	TL2	Matrix Spike	Chromium (VI)	2022/11/30		98	%	80 - 120
8373967	TL2	Spiked Blank	Chromium (VI)	2022/11/30		102	%	80 - 120

Page 10 of 19

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8373967	TL2	Method Blank	Chromium (VI)	2022/11/30	ND, RDL=0.50		ug/L	
8373967	TL2	RPD	Chromium (VI)	2022/11/30	NC		%	20
8374534	MKX	Matrix Spike	Phenols-4AAP	2022/11/30		100	%	80 - 120
8374534	MKX	Spiked Blank	Phenols-4AAP	2022/11/30		101	%	80 - 120
8374534	MKX	Method Blank	Phenols-4AAP	2022/11/30	ND, RDL=0.0010		mg/L	
8374534	ΜΚΧ	RPD	Phenols-4AAP	2022/11/30	NC		%	20
8375381	MSQ	QC Standard	Total Suspended Solids	2022/12/01		96	%	85 - 115
8375381	MSQ	Method Blank	Total Suspended Solids	2022/12/01	ND, RDL=10		mg/L	
8375381	MSQ	RPD	Total Suspended Solids	2022/12/01	9.5		%	20
8375459	NNA	QC Standard	Total BOD	2022/12/05		91	%	80 - 120
8375459	NNA	Method Blank	Total BOD	2022/12/05	ND,RDL=2		mg/L	
8375459	NNA	RPD	Total BOD	2022/12/05	10		%	30
8375550	JGC	Matrix Spike	Mercury (Hg)	2022/11/30		106	%	75 - 125
8375550	JGC	Spiked Blank	Mercury (Hg)	2022/11/30		106	%	80 - 120
8375550	JGC	Method Blank	Mercury (Hg)	2022/11/30	ND, RDL=0.00010		mg/L	
8375550	JGC	RPD	Mercury (Hg)	2022/11/30	NC		%	20
			Mercury (Hg)	2022/11/30	NC		%	20
			Mercury (Hg)	2022/11/30	NC		%	20
			Mercury (Hg)	2022/11/30	NC		%	20
			Mercury (Hg)	2022/11/30	NC		%	20
			Mercury (Hg)	2022/11/30	NC		%	20
8376848	DEO	Matrix Spike	Nonylphenol (Total)	2022/12/02		88	%	50 - 130
8376848	DEO	Spiked Blank	Nonylphenol (Total)	2022/12/02		84	%	50 - 130
8376848	DEO	Method Blank	Nonylphenol (Total)	2022/12/02	ND, RDL=0.001		mg/L	
8376848	DEO	RPD	Nonylphenol (Total)	2022/12/02	NC		%	40
8376857	DEO	Matrix Spike	Nonylphenol Ethoxylate (Total)	2022/12/02		90	%	50 - 130
8376857	DEO	Spiked Blank	Nonylphenol Ethoxylate (Total)	2022/12/02		87	%	50 - 130
8376857	DEO	Method Blank	Nonylphenol Ethoxylate (Total)	2022/12/02	ND, RDL=0.005		mg/L	
8376857	DEO	RPD	Nonylphenol Ethoxylate (Total)	2022/12/02	NC		%	40
8377150	SVS	Matrix Spike	Decachlorobiphenyl	2022/12/01		83	%	60 - 130
			Total PCB	2022/12/01		80	%	60 - 130
8377150	SVS	Spiked Blank	Decachlorobiphenyl	2022/12/01		76	%	60 - 130
			Total PCB	2022/12/01		91	%	60 - 130
8377150	SVS	Method Blank	Decachlorobiphenyl	2022/12/01		75	%	60 - 130
			Total PCB	2022/12/01	ND, RDL=0.05		ug/L	
8377150	SVS	RPD	Total PCB	2022/12/01	NC		%	40
8377550	RG4	Matrix Spike	Total Aluminum (Al)	2022/12/01		NC	%	80 - 120
			Total Antimony (Sb)	2022/12/01		83	%	80 - 120
			Total Arsenic (As)	2022/12/01		103	%	80 - 120
			Total Cadmium (Cd)	2022/12/01		102	%	80 - 120
			Total Chromium (Cr)	2022/12/01		101	%	80 - 120
			Total Cobalt (Co)	2022/12/01		102	%	80 - 120
			Total Copper (Cu)	2022/12/01		103	%	80 - 120
			Total Lead (Pb)	2022/12/01		91	%	80 - 120

Page 11 of 19

QUALITY ASSURANCE REPORT(CONT'D)

Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Manganese (Mn)	2022/12/01		108	%	80 - 120
			Total Molybdenum (Mo)	2022/12/01		106	%	80 - 120
			Total Nickel (Ni)	2022/12/01		98	%	80 - 120
			Total Phosphorus (P)	2022/12/01		108	%	80 - 120
			Total Selenium (Se)	2022/12/01		95	%	80 - 120
			Total Silver (Ag)	2022/12/01		96	%	80 - 120
			Total Tin (Sn)	2022/12/01		107	%	80 - 120
			Total Titanium (Ti)	2022/12/01		159 (1)	%	80 - 120
			Total Zinc (Zn)	2022/12/01		97	%	80 - 120
8377550	RG4	Spiked Blank	Total Aluminum (Al)	2022/12/01		102	%	80 - 120
			Total Antimony (Sb)	2022/12/01		105	%	80 - 120
			Total Arsenic (As)	2022/12/01		101	%	80 - 120
			Total Cadmium (Cd)	2022/12/01		102	%	80 - 120
			Total Chromium (Cr)	2022/12/01		97	%	80 - 120
			Total Cobalt (Co)	2022/12/01		101	%	80 - 120
			Total Copper (Cu)	2022/12/01		97	%	80 - 120
			Total Lead (Pb)	2022/12/01		97	%	80 - 120
			Total Manganese (Mn)	2022/12/01		100	%	80 - 120
			Total Molybdenum (Mo)	2022/12/01		96	%	80 - 120
			Total Nickel (Ni)	2022/12/01		101	%	80 - 120
			Total Phosphorus (P)	2022/12/01		106	%	80 - 120
			Total Selenium (Se)	2022/12/01		105	%	80 - 120
			Total Silver (Ag)	2022/12/01		100	%	80 - 120
			Total Tin (Sn)	2022/12/01		103	%	80 - 120
			Total Titanium (Ti)	2022/12/01		101	%	80 - 120
			Total Zinc (Zn)	2022/12/01		106	%	80 - 120
8377550	RG4	Method Blank	Total Aluminum (Al)	2022/12/01	ND, RDL=4.9		ug/L	
			Total Antimony (Sb)	2022/12/01	ND, RDL=0.50		ug/L	
			Total Arsenic (As)	2022/12/01	ND, RDL=1.0		ug/L	
			Total Cadmium (Cd)	2022/12/01	ND, RDL=0.090		ug/L	
			Total Chromium (Cr)	2022/12/01	ND, RDI =5.0		ug/L	
			Total Cobalt (Co)	2022/12/01	ND, BDI =0.50		ug/L	
			Total Copper (Cu)	2022/12/01	ND, RDI =0.90		ug/L	
			Total Lead (Pb)	2022/12/01	ND, RDL=0.50		ug/L	
			Total Manganese (Mn)	2022/12/01	ND, RDL=2.0		ug/L	
			Total Molybdenum (Mo)	2022/12/01	ND, RDL=0.50		ug/L	
			Total Nickel (Ni)	2022/12/01	ND, RDL=1.0		ug/L	
			Total Phosphorus (P)	2022/12/01	ND, RDL=100		ug/L	
			Total Selenium (Se)	2022/12/01	ND, RDL=2.0		ug/L	

Page 12 of 19

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC			- .			_		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Silver (Ag)	2022/12/01	ND, RDL=0.090		ug/L	
			Total Tin (Sn)	2022/12/01	ND, BDI =1.0		ug/L	
			Total Titanium (Ti)	2022/12/01	ND.		ug/l	
				2022/12/01	RDL=5.0		46/ 5	
			Total Zinc (Zn)	2022/12/01	ND,		ug/L	
					RDL=5.0			
8377550	RG4	RPD	Total Manganese (Mn)	2022/12/01	1.7		%	20
8380818	AZ	Matrix Spike	2,4,6-Tribromophenol	2022/12/02		62	%	10 - 130
			2-Fluorobiphenyl	2022/12/02		53	%	30 - 130
			D14-Terphenyl (FS)	2022/12/02		89	%	30 - 130
			D5-Nitrobenzene	2022/12/02		61	%	30 - 130
			D8-Acenaphthylene	2022/12/02		61	%	30 - 130
			Di-N-butyl phthalate	2022/12/02		96	%	30 - 130
			Bis(2-ethylhexyl)phthalate	2022/12/02		111	%	30 - 130
			3,3'-Dichlorobenzidine	2022/12/02		17 (2)	%	30 - 130
			Pentachlorophenol	2022/12/02		90	%	30 - 130
			Phenanthrene	2022/12/02		79	%	30 - 130
			Anthracene	2022/12/02		78	%	30 - 130
			Fluoranthene	2022/12/02		94	%	30 - 130
			Pyrene	2022/12/02		94	%	30 - 130
			Benzo(a)anthracene	2022/12/02		93	%	30 - 130
			Chrysene	2022/12/02		99	%	30 - 130
			Benzo(b/j)fluoranthene	2022/12/02		110	%	30 - 130
			Benzo(k)fluoranthene	2022/12/02		101	%	30 - 130
			Benzo(a)pyrene	2022/12/02		107	%	30 - 130
			Indeno(1,2,3-cd)pyrene	2022/12/02		119	%	30 - 130
			Dibenzo(a,h)anthracene	2022/12/02		117	%	30 - 130
			Benzo(g,h,i)perylene	2022/12/02		125	%	30 - 130
			Dibenzo(a,i)pyrene	2022/12/02		90	%	30 - 130
			Benzo(e)pyrene	2022/12/02		106	%	30 - 130
			Perylene	2022/12/02		97	%	30 - 130
			Dibenzo(a,j) acridine	2022/12/02		117	%	30 - 130
			7H-Dibenzo(c,g) Carbazole	2022/12/02		84	%	30 - 130
			1,6-Dinitropyrene	2022/12/02		108	%	30 - 130
			1,3-Dinitropyrene	2022/12/02		105	%	30 - 130
			1,8-Dinitropyrene	2022/12/02		110	%	30 - 130
8380818	AZ	Spiked Blank	2,4,6-Tribromophenol	2022/12/02		65	%	10 - 130
			2-Fluorobiphenyl	2022/12/02		61	%	30 - 130
			D14-Terphenyl (FS)	2022/12/02		90	%	30 - 130
			D5-Nitrobenzene	2022/12/02		77	%	30 - 130
			D8-Acenaphthylene	2022/12/02		/3	%	30 - 130
			DI-N-butyi phthalate	2022/12/02		95	%	30 - 130
			BIS(2-etnyinexyl)phthalate	2022/12/02		11/	%	30 - 130
			3,3 -DICRIOROBERZIGINE	2022/12/02		55	%	30 - 130
			Pentachiorophenol	2022/12/02		80	%	30 - 130
			Phenanthrene	2022/12/02		81	%	30 - 130
			Anthracene	2022/12/02		82	%	30 - 130
			Fluoranthene	2022/12/02		94	%	30 - 130
			Pyrene	2022/12/02		93	%	30 - 130

Page 13 of 19

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analvzed	Value	Recoverv	UNITS	QC Limits
		· /r ·	Benzo(a)anthracene	2022/12/02		94	%	30 - 130
			Chrvsene	2022/12/02		99	%	30 - 130
			Benzo(b/i)fluoranthene	2022/12/02		111	%	30 - 130
			Benzo(k)fluoranthene	2022/12/02		103	%	30 - 130
			Benzo(a)pyrene	2022/12/02		109	%	30 - 130
			Indeno(1,2,3-cd)pyrene	2022/12/02		118	%	30 - 130
			Dibenzo(a,h)anthracene	2022/12/02		117	%	30 - 130
			Benzo(g,h,i)perylene	2022/12/02		124	%	30 - 130
			Dibenzo(a,i)pyrene	2022/12/02		92	%	30 - 130
			Benzo(e)pyrene	2022/12/02		107	%	30 - 130
			Perylene	2022/12/02		95	%	30 - 130
			Dibenzo(a,j) acridine	2022/12/02		116	%	30 - 130
			7H-Dibenzo(c,g) Carbazole	2022/12/02		87	%	30 - 130
			1,6-Dinitropyrene	2022/12/02		116	%	30 - 130
			1,3-Dinitropyrene	2022/12/02		115	%	30 - 130
			1,8-Dinitropyrene	2022/12/02		120	%	30 - 130
8380818	AZ	Method Blank	2,4,6-Tribromophenol	2022/12/02		50	%	10 - 130
			2-Fluorobiphenyl	2022/12/02		63	%	30 - 130
			D14-Terphenyl (FS)	2022/12/02		94	%	30 - 130
			D5-Nitrobenzene	2022/12/02		80	%	30 - 130
			D8-Acenaphthylene	2022/12/02		75	%	30 - 130
			Di-N-butyl phthalate	2022/12/02	ND,RDL=2		ug/L	
			Bis(2-ethylhexyl)phthalate	2022/12/02	ND,RDL=2		ug/L	
			3,3'-Dichlorobenzidine	2022/12/02	ND, RDL=0.8		ug/L	
			Pentachlorophenol	2022/12/02	ND,RDL=1		ug/L	
			Phenanthrene	2022/12/02	ND, RDL=0.2		ug/L	
			Anthracene	2022/12/02	ND, RDL=0.2		ug/L	
			Fluoranthene	2022/12/02	ND, RDL=0.2		ug/L	
			Pyrene	2022/12/02	ND, RDL=0.2		ug/L	
			Benzo(a)anthracene	2022/12/02	ND, RDL=0.2		ug/L	
			Chrysene	2022/12/02	ND, RDL=0.2		ug/L	
			Benzo(b/j)fluoranthene	2022/12/02	ND, RDL=0.2		ug/L	
			Benzo(k)fluoranthene	2022/12/02	ND, RDL=0.2		ug/L	
			Benzo(a)pyrene	2022/12/02	ND, RDL=0.2		ug/L	
			Indeno(1,2,3-cd)pyrene	2022/12/02	ND, RDL=0.2		ug/L	
			Dibenzo(a,h)anthracene	2022/12/02	ND, RDL=0.2		ug/L	
			Benzo(g,h,i)perylene	2022/12/02	ND, RDL=0.2		ug/L	
			Dibenzo(a,i)pyrene	2022/12/02	ND, RDL=0.2		ug/L	

Page 14 of 19

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC	1	00 T	Demonstern	Data Analyzad	Malua	D		OC Lineite
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC LIMITS
			Benzo(e)pyrene	2022/12/02			ug/L	
			Devidence	2022/12/02	NDL=0.2			
			Perylette	2022/12/02			ug/L	
			Dihanza(2 i) acridina	2022/12/02			ug/I	
			Dibenzo(a,j) activite	2022/12/02	RDI =0.4		ug/L	
			7H-Dibenzo(c g) Carbazole	2022/12/02	ND		.uσ/I	
				2022/12/02	RDI =0.4		46/ L	
			1.6-Dinitropyrene	2022/12/02	ND.		ug/l	
			2)0 2 00 /		RDL=0.4		~B/ =	
			1.3-Dinitropyrene	2022/12/02	ND.		ug/L	
				- , , -	RDL=0.4		· 0,	
			1,8-Dinitropyrene	2022/12/02	ND,		ug/L	
					RDL=0.4			
8380818	AZ	RPD	Di-N-butyl phthalate	2022/12/03	NC		%	40
			Bis(2-ethylhexyl)phthalate	2022/12/03	NC		%	40
			3,3'-Dichlorobenzidine	2022/12/03	NC		%	40
			Pentachlorophenol	2022/12/03	NC		%	40
			Phenanthrene	2022/12/03	NC		%	40
			Anthracene	2022/12/03	NC		%	40
			Fluoranthene	2022/12/03	NC		%	40
			Pyrene	2022/12/03	NC		%	40
			Benzo(a)anthracene	2022/12/03	NC		%	40
			Chrysene	2022/12/03	NC		%	40
			Benzo(b/j)fluoranthene	2022/12/03	NC		%	40
			Benzo(k)fluoranthene	2022/12/03	NC		%	40
			Benzo(a)pyrene	2022/12/03	NC		%	40
			Indeno(1,2,3-cd)pyrene	2022/12/03	NC		%	40
			Dibenzo(a,h)anthracene	2022/12/03	NC		%	40
			Benzo(g,h,i)perylene	2022/12/03	NC		%	40
			Dibenzo(a,i)pyrene	2022/12/03	NC		%	40
			Benzo(e)pyrene	2022/12/03	NC		%	40
			Perylene	2022/12/03	NC		%	40
			Dibenzo(a,j) acridine	2022/12/03	NC		%	40
			7H-Dibenzo(c,g) Carbazole	2022/12/03	NC		%	40
			1,6-Dinitropyrene	2022/12/03	NC		%	40
			1,3-Dinitropyrene	2022/12/03	NC		%	40
			1,8-Dinitropyrene	2022/12/03	NC		%	40
8381722	NSG	Spiked Blank	Total Oil & Grease	2022/12/02		99	%	85 - 115
8381722	NSG	RPD	Total Oil & Grease	2022/12/02	0.25		%	25
8381722	NSG	Method Blank	Total Oil & Grease	2022/12/02	ND,		mg/L	
					RDL=0.50			
8381727	NSG	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2022/12/02		97	%	85 - 115
8381727	NSG	RPD	Total Oil & Grease Mineral/Synthetic	2022/12/02	0.52		%	25

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8381727	NSG	Method Blank	Total Oil & Grease Mineral/Synthetic	2022/12/02	ND,		mg/L	
					RDL=0.50			

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Matrix Spike exceeds acceptance limits. Probable Matrix interference

(2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Sonja Elavinamannil, Master of Biochemistry, Team Lead

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

3	01CF	Bureau Veritas 6740 campobello Road, Mississaug	a, Ontario Canada	L5N 2L8 Tel:(905) 817	-5700 Toll-free:80)-563-6266 Fax	(905) 817-577	7 www.bvna.com						СН	28-Nov-22 15:40 Joianta Goralczyk				Page	of
-	11 11 11	IVOICE TO:			REP	ORT TO:			-	_	PROJEC	TINFORMAT	NON:			1111111111				
Compa	ny Name: #248/4 Ground	water Environmental Manage	ement Ser Co	ompany Name:	- P				Quotation	#	C1539	94			C.	213330			le Order	#:
ttenti	Accounting	Del Lleit # 0	At	tention					P.O.#			-		1	ATTT	ENT-155	0		anner	ALL
ddres	S: TOURIVEIMedel	200	Ac	idress.			ma ta la		Project		22-13	02 22	-146	14	4.41	148 4-155	-		907396	
	(005) 007 3077	(006) 007 (2617	MIKE FRAM	ICISICGEN	SERVIC	ESINC.	COM	Project Na	ame:	2636	-2654	Egl	inton Ave h	J	COC #:		Pri	oject Mana	ger:
el;	valerie poble@g	Fax: (905) 907-4	5017 Te	(047)	517-2024	Fax		Distance	Site #				0		1 1111			. In	lanta Gorali	ezuk
man	valenc.nobie@g	smaerviceand.com	Er	nail: Naiui	n.cocks@gen	servicesinc.	com, Matth	ew.Pickett@	Sampled E	By	L	4				C#907396-01-01			unia Obraic	sel.
N	OE REGULATED DRINKIN SUBMITTED ON T	G WATER OR WATER INTENE HE BUREAU VERITAS DRINK	DED FOR HUM	AN CONSUMPTIO HAIN OF CUSTOD	N MUST BE Y		6	ANA	LYSIS REI	QUESTER	O (PLEASE B	E SPECIFIC			1	Turmaroun Please provide a	d Time (TAT) F dvance notice f	Required: or rush pro	jects	
-	Regulation 153 (2011)	Other Regu	lations	Specia	Instructions	and a	100					-	-		Regular (Standard) TAT:			-	T
] Tab] Tab] Tab] Tab	le 1 Res/Park Medium le 2 Ind/Comm Coarse le 3 Agn/Other For Rt le	N/Fine CCME Sanitary Reg 558. Storm Si C MISA Municipality PWQO Reg 40 Other	Sewer Bylaw awer Bylaw Tomoto 6 Table			Filtered (please c letals / Hg / Cr VI	tanitary&Storm Sewe								Standard TA Please note days - contai Job Specif Date Require	IT = 5-7 Working days for Standard TAT for certai ct your Project Manager fic Rush TAT (if applie ad	ecined): in most tests. in lests such as E for details. s to entire subi	BOD and Die nission) ne Required	ixins/Furans	are > 5
	Include Criteri	a on Certificate of Analysis (Y/N	07 Y			≥ N I	otos								Rush Confin	mation Number:				
1	Sample Barcode Label	Sample (Location) Identification	Date Sam	pled Time Sample	d Matrix		Toror 2016								# of Bottles	1	Comm	call lab for #		
		MWIDI	22/11/	28 11:00	GW		1								18					
2															10					
												-	-							-
+				-	-							1.1						_		
				_																
5																				
																				_
												-								-
												-								-
,												-			-					_
0			-	-	-				-	-			-					-	-	
		interneting for the	00/00/00																	
1	MALINQUISHED BY: (S	gnature/Print) Date	(TT/MM/DD)	12-00	RECEIVED	BY: (Signature	Print)	Date: (YY/M	M/DD)	T	ime	# jars use not subm	d and hitted	1	Labora	atory Use Only				
4	- 1010 Log.	in / [Nabb 22/]	1/28	12:00	A KA	MAJ	ANI	2022 11	as	191	10			Time Sensitive	Temperat	ure (°C) on Recei	Custody Se	al	Yes	No
-									-						8	818	Intact		1	-
T IS T	WLEDGMENT AND ACCEPTANCE HE RESPONSIBILITY OF THE REL	OF OUR TERMS WHICH ARE AVAILABI	HAIN OF CUSTODY LE FOR VIEWING A CY OF THE CHAIN	OF CUSTODY RECORD	AU VERITAS'S STA VIRONMENTAL-LAE D. AN INCOMPLETE	ORATORIES/RE	AND CONDITIO SOURCES/CO	ONS. SIGNING OF TH C-TERMS-AND-CON	DITIONS.	OF CUSTO	DDY DOCUM	ENT IS	MPLES	MUST BE KEPT CO	OL (< 10° C)	FROM TIME OF SAMP	White: I	Bureau Ve	ritas Yello	w: Clie
AMF	LE CONTAINER, PRESERVATION	HOLD TIME AND PACKAGE INFORMA	TION CAN BE VIEW	VED AT WWW.BVNA.CO	M/ENVIRONMENTA	L-LABORATOR	ES/RESOURCI	ES/CHAIN-CUSTODY	FORMS-C	cocs.				OWNE DELIVE	IN TO BUREA	O VENTAS				

BV-62 DILD

Exceedance Summary Table – Toronto Storm Sewer

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS	
MW101	UKU597-05	Total Suspended Solids	15	85	10	mg/L	
		Detection Limit Excee	dances				
Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS	
MW101	UKU597-03	Total PAHs (18 PAHs)	2	<5	5	ug/L	
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.							

Exceedance Summary Table – Toronto Sanitary Sewer

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summary table	e is for information purp	oses only and should not be consi	dered a compreh	ensive listing or	statement of c	onformance to
applicable regulatory guideline	s.					

Appendix F

Dewatering Calculations

Table 1

Short-Term Dewatering Rate Calculations Proposed Development:2636 -2654 Eglinton Ave West

Proposed Develo	pment:2636 -2654 Eglinton Ave West		Pro	ject No.	22-1464
Symbol	Description	Value 7 Days	Value 40 Days	Unit	Comment
Dewatering target	heights and elevations	-	-		
E _{Target} = E _{invert} - 1	Dewatering target elevation	113.50	113.50	masl	
E _{wp} = E _{Target} - 1	Target water level	112.50	112.50	masl	
$H = E_{GW} - E_{wp}$	Initial height of groundwater	13.80	13.80	m	
h = E _{Target} - E _{wp}	Target height of groundwater	1.00	1.00	m	
H - h	Drawdown required	12.80	12.80	m	
t	Duration of Dewatering	7	40	days	
К	Hydraulic Conductivity	2.0E-07	2.0E-07	m/s	
Т	Transmissivity	2.8E-06	2.8E-06	m²/sec	T = K ⋅ (H − h)
Cs	Storage Coefficient	0.30	0.30	no units	
C ₄	Constant	4790	4790	no units	
а	Dewatered Area Length	45.0	45.0	m	
b	Dewatered Area Width	30.0	30.0	m	
r _w	Effective Well Radius of Open Excavation	23.9	23.9	m	$r_w = \frac{a+b}{\pi}$
R _o	Radius of influence	27.4	32.3	m	$R_o = r_w + \sqrt{\frac{T \cdot t}{C_4 \cdot C_s}}$
Q	Predicted Pumping Rate	51.7	23.6	L/min	Unconfined Conditions $Q = \frac{\pi \cdot K (H^2 - h^2)}{P}$
		74,430	33,917	L/day	$\frac{\ln\left(\frac{R_0}{r_w}\right)}{(Powers et al., 2008)}$

Groundwater Environmental Management Services

Appendix G

MECP Wells

Table 1: MECP Summary Table2400 - 2440 Dundas Street West, Toronto, ON

Well ID	FID	Easting	Northing	Well Usage
6928208	0	622578	4838930	#N/A
7153849	1	622776	4838565	Monitoring
7153850	2	622823	4838545	Monitoring
7154471	3	622945	4838612	Monitoring
7155348	4	622570	4838409	Monitoring
7155352	5	622630	4838295	Monitoring
7156541	6	622979	4838656	Monitoring
7161366	7	622583	4838798	Monitoring and Test Hole
7161367	8	622584	4838799	Monitoring and Test Hole
7161368	9	622573	4838814	Monitoring and Test Hole
7161369	10	622573	4838821	Monitoring and Test Hole
7171141	11	623416	4838753	Monitoring
7171536	12	623287	4838701	Monitoring
7171538	13	622832	4838608	Monitoring
7177982	14	623084	4838634	Monitoring
7180621	15	622940	4838579	Monitoring and Test Hole
7180622	16	622933	4838598	
7180623	17	622929	4838582	Monitoring and Test Hole
7180624	18	622923	4838558	
7180625	19	622923	4838558	
7180626	20	622941	4838576	Monitoring and Test Hole
7180627	21	622923	4838571	
7180628	22	622923	4838557	
7185114	23	622931	4838554	
7188179	24	622918	4838702	Test Hole
7188180	25	622929	4838678	Test Hole
7188181	26	622895	4838664	Test Hole
7193053	27	622941	4838585	Test Hole
7196174	28	622847	4838536	Monitoring and Test Hole
7196175	29	622831	4838538	Monitoring and Test Hole
7196176	30	622834	4838536	Monitoring and Test Hole
7196177	31	622829	4838531	Monitoring and Test Hole
7196178	32	622839	4838532	Monitoring and Test Hole
7196443	33	622578	4838473	Monitoring
7197327	34	622519	4838452	
7201492	35	622851	4838629	Test Hole
7201493	36	622870	4838614	Test Hole
7202149	37	622870	4838615	
7202150	38	622968	4838669	
7204800	39	623024	4838234	Monitoring
7204804	40	622960	4838408	Monitoring
7204805	41	623048	4838170	Monitoring
7204806	42	622829	4838238	Monitoring
7204807	43	622767	4838158	Monitoring
7211338	44	623412	4838782	
---------	----	--------	---------	--------------------------
7212577	45	622921	4838531	
7212579	46	622921	4838531	
7214948	47	622860	4838566	
7215004	48	623271	4838756	Test Hole
7220550	49	623374	4838735	Monitoring
7227393	50	622957	4838585	Monitoring and Test Hole
7227394	51	622957	4838624	Monitoring
7230839	52	622938	4838651	Monitoring and Test Hole
7230840	53	622921	4838649	Monitoring and Test Hole
7230841	54	622906	4838638	Monitoring and Test Hole
7231829	55	623367	4838383	
7238253	56	623294	4838728	Dewatering
7238254	57	623282	4838723	Dewatering
7242611	58	623282	4838701	Dewatering
7245499	59	622570	4838856	Monitoring and Test Hole
7245555	60	622579	4838916	Monitoring and Test Hole
7245556	61	622516	4838904	Monitoring and Test Hole
7246566	62	622604	4838870	Monitoring and Test Hole
7246567	63	622550	4838865	Monitoring and Test Hole
7246568	64	622500	4838843	Monitoring and Test Hole
7253181	65	622918	4838593	Monitoring
7253776	66	623282	4838701	Dewatering
7253777	67	623282	4838703	Dewatering
7253778	68	623294	4838728	Dewatering
7258944	69	622584	4838482	Monitoring
7258945	70	622584	4838482	
7258946	71	622584	4838482	Monitoring
7259790	72	622891	4838542	
7260008	73	622541	4838433	
7260009	74	622538	4838427	
7260010	75	622524	4838429	
7260011	76	622524	4838429	
7260481	77	622689	4838544	Monitoring and Test Hole
7260482	/8	622701	4838538	Monitoring and Test Hole
/260483	/9	622/12	4838546	Monitoring and Test Hole
/261345	80	622827	4838549	
7261346	81	622837	4838552	
/26134/	82	622920	4838571	
/261348	83	622939	4838587	
/261349	84	622945	4838575	
/261350	85	622832	4838527	
/261351	86	622842	4838539	
/261352	8/	622845	4838532	
/261353	88	622908	4838646	
/261354	89	622914	4838698	
/261355	90	622929	4838671	

7261356	91	622904	4838663	
7261357	92	622968	4838669	
7261358	93	622944	4838660	
7261359	94	622909	4838625	
7261360	95	622920	4838632	
7261362	96	622906	4838625	
7261363	97	622906	4838621	
7261364	98	622934	4838587	
7261365	99	622928	4838583	
7261366	100	622927	4838560	
7261367	101	622924	4838560	
7261368	102	622946	4838568	
7261369	103	622928	4838631	
7262338	104	622913	4838647	Monitoring and Test Hole
7262339	105	622915	4838648	Monitoring and Test Hole
7262340	106	622910	4838646	Monitoring and Test Hole
7262341	107	622917	4838649	Monitoring and Test Hole
7262385	108	622472	4838402	Monitoring
7262386	109	622522	4838418	Monitoring
7262390	110	622503	4838381	Monitoring
7262391	111	622482	4838382	Monitoring
7262392	112	622568	4838400	Monitoring
7262393	113	622565	4838422	Monitoring
7262394	114	622547	4838428	Monitoring
7262395	115	622514	4838393	Monitoring
7262445	116	623442	4838755	Monitoring
7265771	117	622828	4838581	Monitoring
7271774	118	622571	4838813	
7272522	119	622949	4838588	
7272523	120	622945	4838588	Dewatering
7272526	121	622944	4838596	Dewatering
7272527	122	622923	4838583	Dewatering
7272528	123	622919	4838577	Dewatering
7272529	124	622940	4838586	Dewatering
7272530	125	622933	4838582	Dewatering
7272531	126	622936	4838567	Dewatering
7272549	127	622896	4838598	Dewatering
7272740	128	622866	4838565	Dewatering
7272741	129	622887	4838585	Dewatering
7272742	130	622883	4838586	
7272743	131	622871	4838568	Dewatering
7272744	132	622854	4838565	Dewatering
7272745	133	622875	4838572	Dewatering
7272746	134	622858	4838567	Dewatering
7272747	135	622845	4838587	Dewatering
7272748	136	622846	4838600	Dewatering
7272749	137	622851	4838606	Dewatering

7272824	138	622859	4838600	Dewatering
7275992	139	622909	4838616	Dewatering
7275993	140	622904	4838638	Domestic
7275995	141	622922	4838659	Dewatering
7275996	142	622923	4838638	Dewatering
7275997	143	622923	4838638	
7275998	144	622925	4838638	Dewatering
7275999	145	622927	4838631	Dewatering
7276000	146	622931	4838618	Dewatering
7276001	147	622905	4838627	Dewatering
7276002	148	622846	4838567	Dewatering
7276003	149	622836	4838548	Dewatering
7276004	150	622836	4838547	Dewatering
7276005	151	622837	4838545	Dewatering
7276006	152	622845	4838535	Dewatering
7276007	153	622845	4838537	Domestic
7276008	154	622833	4838532	Dewatering
7276009	155	622842	4838542	Dewatering
7276010	156	622834	4838528	Dewatering
7276011	157	622836	4838525	Dewatering
7276012	158	622842	4838530	Dewatering
7276013	159	622830	4838537	Dewatering
7276014	160	622529	4838545	Dewatering
7276015	161	622826	4838550	Dewatering
7276016	162	622919	4838638	Dewatering
7276017	163	622918	4838644	Dewatering
7276018	164	622914	4838641	Domestic
7276019	165	622910	4838635	Dewatering
7276020	166	622902	4838634	Dewatering
7276021	167	622919	4838641	Dewatering
7276022	168	622902	4838633	Dewatering
7276445	169	622871	4838603	Dewatering
7276446	170	622872	4838599	Dewatering
7276447	171	622867	4838563	Dewatering
7276448	172	622859	4838615	Dewatering
7276449	173	622860	4838615	Dewatering
7276450	174	622857	4838605	Dewatering
7276451	175	622860	4838600	Dewatering
7276452	176	622872	4838609	Dewatering
7276453	177	622869	4838615	
7278189	178	622601	4838484	
7278190	179	622591	4838490	
7278191	180	622582	4838490	
7278192	181	622585	4838484	
7278193	182	622574	4838283	
7278194	183	622559	4838420	
7278195	184	622486	4838363	

7278196	185	622522	4838449	
7278197	186	622472	4838414	
7278897	187	622851	4838367	
7287372	188	622833	4838558	Monitoring
7289116	189	622870	4838611	Dewatering
7289117	190	622871	4838617	Dewatering
7289118	191	622865	4838625	Domestic
7289119	192	622868	4838619	Dewatering
7294462	193	622574	4838868	Test Hole
7294463	194	622584	4838851	Test Hole
7294464	195	622515	4838839	Test Hole
7294465	196	622533	4838858	Test Hole
7296389	197	622551	4838896	Test Hole
7296390	198	622617	4838896	Test Hole
7298509	199	622892	4838600	Dewatering
7298510	200	622830	4838582	Dewatering
7298511	201	622892	4838600	Dewatering
7298512	202	622898	4838604	Dewatering
7298513	203	622941	4838618	Dewatering
7298514	204	622823	4838580	Dewatering
7298515	205	622940	4838615	Dewatering
7298516	206	622908	4838612	Dewatering
7298517	207	622906	4838608	Dewatering
7298518	208	622867	4838630	Dewatering
7299820	209	622906	4838633	Dewatering
7301929	210	622873	4838599	
7301930	211	622836	4838548	
7301931	212	622920	4838638	
7301932	213	622913	4838636	
7301933	214	622836	4838542	
7308184	215	623276	4838755	
7309101	216	622553	4838898	
7312061	217	622573	4838852	Monitoring
7329480	218	622573	4838849	
7337152	219	622957	4838715	Monitoring
7337165	220	622947	4838691	Monitoring
7337213	221	622964	4838680	Monitoring
7356458	222	622860	4838605	
7363176	223	623268	4838691	
7368565	224	623350	4838865	Monitoring
7379603	225	622933	4838582	
7379604	226	622919	4838577	
7379605	227	622904	4838638	
7379606	228	622836	4838525	